Äquivalenzumformungen bei Gleichungen
Formel
Äquivalenzumformungen bei Gleichungen
Unter einer Äquivalenzumformung einer Gleichung versteht eine Umformung, die den Wahrheitswert der Gleichung unverändert lässt. Eine Äquivalenzumformung ändert also die Lösung einer Gleichung nicht. Äquivalenzumformungen umfassen das Zusammenfassen von Termen auf einer oder beiden Seiten der Gleichung. Weiters handelt es sich dabei um die Addition, Subtraktion, Multiplikation oder Division eines gleichen Terms auf beiden Seiten der Gleichung. Zudem darf man die beiden Seiten einer Gleichung, linke Seite bzw. rechte Seite vom Gleichheitszeichen, mit einander vertauschen.
Nicht jede Umformung einer Gleichung ist eine Äquivalenzumformung
Die Division durch die Variable x ist keine Äquivalenzumformung.
Beispiel
\(\eqalign{ & {x^2} - 5x = 0\,\,\,\,\,\,\,\,\left| {:x} \right. \cr & x - 5 = 0 \cr} \)
Die Lösungsmenge der quadratischen Gleichung besteht aus den 2 Elementen: \(L = \left\{ {0;5} \right\}\), die Lösungsmenge der linearen Gleichung besteht nur mehr aus einer Lösung \(L = \left\{ 5 \right\}\), es ist somit eine Lösung verloren gegangen, daher ist diese Umformung unzulässig.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Wissenspfad
Zur aktuellen Lerneinheit empfohlenes Vorwissen
Gleichungen | Eine Gleichung ist eine mathematische Schreibweise, die zwei Terme durch ein Gleichheitszeichen verbindet. Bei Gleichungen mit einer oder mehreren Variablen gilt es jene Werte der Variablen aus einer gegebenen Grundmenge zu bestimmen, für die die Lösung der Gleichung eine wahre Aussage wird. |
Aktuelle Lerneinheit
Äquivalenzumformungen bei Gleichungen | Unter einer Äquivalenzumformung einer Gleichung versteht eine Umformung, die den Wahrheitswert der Gleichung unverändert lässt |
Verbreitere dein Wissen zur aktuellen Lerneinheit
Lineare Gleichung mit einer Variablen | In einer linearen Gleichung mit einer Variablen kommt die einzige Variable lediglich zur ersten Potenz vor.
|
Satz von Vieta | Der Satz von Vieta erlaubt es quadratische Gleichungen die als Polynom, also als Summe oder Differenz, gegeben sind in ein Produkt umzurechnen. Die Linearfaktorzerlegung erlaubt es (quadratische) Gleichungen mit Hilfe ihrer Nullstellen als Produkt anzuschreiben. |
Quadratischen Gleichung mit einer Variablen | In dieser Mikro-Lerneinheit lernst du mehrere Methoden, wie man quadratische Gleichungen lösen kann. Wir werden die allgemeine quadratische Gleichung mittels der abc-Formel (große Lösungsformel) und die normierte quadratische Gleichung mittels der pq-Formel (kleine Lösungsformel) lösen. Mit Hilfe der Diskriminante erkennst du, wie viele Lösungen eine quadratische Gleichung hat und welcher Zahlenmenge die Lösungen angehört. |
Lineare Gleichungen mit zwei Variablen | Eine Lösung des Gleichungssystems liegt dann vor, wenn man jeder der n Variablen genau einen Zahlenwert zuordnen kann, sodass alle m Gleichungen zu wahren Aussagen werden. |
Aufgaben zu diesem Thema
Aufgabe 67
Quadratische Gleichung mit einer Variablen
Gegeben sei folgende quadratische Gleichung:
\(a{x^2} + bx + c = 0;\,\,\,\,\,a{\text{, b}}{\text{, c }} \in {\Bbb R}\,\,\,\,\,a \ne 0\)
Zeige an Hand des Beispiels a=4 und b=12 für den Spezialfall c=0, wie man Gleichungen vom Typ \(a{x^2} + bx = 0\) lösen kann.
Aufgabe 1492
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Äquivalenzumformung
Nicht jede Umformung einer Gleichung ist eine Äquivalenzumformung.
\(\eqalign{ & {x^2} - 5x = 0\,\,\,\,\,\,\,\,\left| {:x} \right. \cr & x - 5 = 0 \cr} \)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Erklären Sie konkret auf das oben angegebene Beispiel bezogen, warum es sich bei der durchgeführten Umformung um keine Äquivalenzumformung handelt! Die Grundmenge ist die Menge der reellen Zahlen.