Strahlen- und Wellentheorie des Lichtes
Formel
Strahlen- und Wellentheorie des Lichtes
Das Spektrum der elektromagnetischen Wellen hat Erscheinungsformen die von Wechselströmen über Rundfunk, Mikrowelle, Infrarot, sichtbares Licht, UV-Licht, Röntgenstrahlung, Gammastrahlung beim Kernzerfall bis zur kosmologischen Strahlung reichen.
Licht als Korpuskelstrahl
Dieser veraltete Ansatz aus der Zeit von Newton modelliert das Licht als eine Aufeinanderfolge von materiellen Teilchen. In der heutigen Quantenelektrodynamik gibt es mit dem Photon zwar ein Lichtteilchen, doch ist dieses masselos, weil es nicht mit dem Higgs-Feld wechselwirkt.
Licht im Welle-Teilchen-Dualismus
Der Welle-Teilchen-Dualismus von Licht findet seine Erklärung in der Quantenmechanik, derzufolge Objekte der Quantenphysik sowohl Eigenschaften als Welle und als Teilchen haben. Die masselosen Photonen, die sich mit Lichtgeschwindigkeit ausbreiten, sind die Quanten der elektromagnetischen Wechselwirkung.
Licht als Teilchenstrahl
Wenn man sich mit dem Weg auseinander setzt, den das Licht zurücklegt, dann modelliert man das Licht als einen Teilchenstrahl. Die Teilchen sind die masselose Photonen.
Am besten denkt man an einen punktförmigen Laserstrahl. Der Weg den der Strahl nimmt ist umkehrbar. Hinter einem undurchsichtigen Gegenstand entsteht bei punktförmiger Lichtquelle ein scharfer Schatten. Man kann damit die geradlinige Ausbreitung von Licht veranschaulichen, die Schattenbildung, die Reflexion und die Brechung. Lichtstrahlen können sich durchsetzen, ohne sich gegenseitig zu beeinflussen, weil die Teilchen aus denen Licht besteht, die Photonen, masselos sind. Außerhalb des konkreten Strahls gibt es kein Licht von dieser Quelle.
Licht als teilchenlose Welle
Wenn man sich mit Erscheinungen wir Beugung, Interferenz oder Polarisation auseinander setzt, dann modelliert man das Licht als Welle.
Am besten denkt man an die Wellen in einem Becken, in das man einen kleinen Stein geworfen hat. Das Licht ist dabei eine Transversalwelle, die sich mit anderen Wellen überlagern kann. Elementarwellen überlagern sich dabei und ergeben je nach Phasenlage eine Verstärkung oder Auslöschung.
Tatsächlich ist Licht eine elektromagnetische Welle, die in der Lehre von der Elektrodynamik ihre Beschreibung in Form der 4 Maxwell Gleichungen findet. Licht als elektromagnetische Welle besteht aus räumlich und zeitlich periodischen, ungedämpften, gekoppelten elektrischen und magnetischen Feldern, die in den Raum abgestrahlt werden. Das Licht als elektromagnetische Welle wird durch die 4 Maxwell Gleichungen beschrieben. Elektromagnetische Wellen haben in der Quantenelektrodynamik auch Teilchencharakter, ihr Quant ist das Photon.
Man spricht von einer Transversalwelle, weil die Schwingung des elektrischen \(\overrightarrow E\) - und des magnetischen \(\overrightarrow H\) -Feldes senkrecht zur Ausbreitungsrichtung erfolgt. Die elektromagnetische Welle braucht kein Medium („Lichtäther") zur Ausbreitung im Raum, sondern sie pflanzt sich im Vakuum mit Lichtgeschwindigkeit und in Materie mit einer entsprechend kleineren Ausbreitungsgeschwindigkeit fort.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Wissenspfad
Zur aktuellen Lerneinheit empfohlenes Vorwissen
Grundlagen der Physik | Die Grundlagen der Physik sind ein Teilgebiet der Naturwissenschaften. Für die zugehörigen Formeln, Definitionen, Rechenregeln und Beispiele haben wir folgende Gliederung gewählt: Basiseinheiten der Physik und die Naturkonstanten, Mechanik - Die Lehre von bewegten Körpern und Kräften, Thermodynamik, Relativitätstheorie, Atom- und Kernphysik, Strahlen- und Wellentheorie des Lichts, Quantenphysik, Standardmodell der Kosmologie, Standardmodell der Elementarteilchen, Die 4 Wechselwirkungen und der Higgs Mechanismus |
Aktuelle Lerneinheit
Strahlen- und Wellentheorie des Lichtes | Das Licht ist eine elektromagnetische Welle, deren Welle-Teilchen-Dualismus seine Erklärung in der Quantenmechanik findet. Photonen sind die Quanten der elektromagnetischen Wechselwirkung. |
Verbreitere dein Wissen zur aktuellen Lerneinheit
Mechanik | Mechanik ist die Lehre von bewegten Körpern und Kräften. |
Fundamentale Wechselwirkungen | Heute beschreiben die 4 fundamentale Wechselwirkungen, wie physikalische Objekte einander beeinflussen können |
Standardmodell der Elementarteilchen | Das Standardmodell der Elementarteilchen besagt, dass es 12 materiebildende Fermionen und zwischen ihnen 7 Bosonen als Austauschteilchen der 4 Wechselwirkungen gibt. |
Entstehungsgeschichte des Universums | Das Standardmodell der Kosmologie beschreibt die Expansion des Universums seit der Planckzeit |
Unterschied Quantenphysik und klassischen Physik | In der Quantenphysik existiert ein Teilchen gleichzeitig ein wenig dort, wo die aus seiner Wellenfunktion hergeleitete Aufenthaltswahrscheinlichkeit größer als Null ist. Vor und nach der Messung ist das Teilchen eine Welle, während der Messung wird es zu räumlich vorhandener Materie. |
Atom- und Kernphysik | Die Atom- und Kernphysik beschäftig sich mit dem Aufbau der Atomhülle und des Atomkerns. 12 Fermionen und 7 Bosonen (inkl. dem noch nicht nachgewiesenem Gravitron) bilden die bekannte Materie. Die "Dunkle Materie" besteht vermutlich aus weiteren materiebildenden Teilchen. |
SRT und ART | Aus den Newton'schen Gesetzen für Mechanik und Gravitation entwickelte sich die spezielle Relativitätstheorie für Systeme, die sich mit konstanter Geschwindigkeit bewegen und die allgemeine Relativitätstheorie für beschleunigte Systeme unter Einbeziehung der Gravitation |
Hauptsätze der Thermodynamik | Die Thermodynamik beschäftigt sich mit Prozessen der Energieumwandlung sowie mit Zustandsänderungen von Körpern wenn Wärme zu- oder abgeführt wird. |
Basiseinheiten der Physik | Physikalische Größen setzen sich aus einer Maßzahl, einer Größe und einer Einheit zusammen. Die 7 Basisgrößen sind von einander unabhängige Grundgrößen der Physik. |
Vertiefe dein Wissen zur aktuellen Lerneinheit
Compton-Effekt | Als Compton Effekt bezeichnet man die Vergrößerung der Wellenlänge eines Photons bei der Streuung an einem Teilchen (Elektron) |
Energie einer elektromagnetischen Welle | Die Energie einer elektromagnetischen Welle der Frequenz f ist quantisiert. Sie errechnet sich als das Produkt aus dem planckschen Wirkungsquantum und der Frequenz |
Wärmestrahlung | Ein Körper emittiert elektromagnetische Strahlung, sobald seine Temperatur über dem absoluten Nullpunkt liegt |
Lumineszenzstrahlung | Die Luminiszenzstrahlung ist eine nicht-thermische Strahlung |
Wiensche Verschiebungsgesetz | Das Wien'sche Verschiebungsgesetz sagt etwas über die Lage vom Maximum der Strahlungsintensität aus |
Stefan-Boltzmann’sches Strahlungsgesetz | Die Strahlungsleistung (Intensität der Temperaturstrahlung) eines schwarzen Körpers ist proportional zur vierten Potenz der absoluten Temperatur des Körpers. |
Kirchhoffsches Strahlungsgesetz | Das Kirchhoff’sche Strahlungsgesetz stellt den Zusammenhang zwischen Emission und Absorption eines Temperaturstrahlers im thermischen Gleichgewichts her |
Emissionsverhältnis | Das spektrale Emissionsverhältnis \(\varepsilon \left( \tau \right)\) ist frequenzabhängig und errechnet sich als das Verhältnis von emittierter Wäremstrahlung des Körpers zur emittierten Wärmestrahlung eines schwarzen Körpers |
Licht durchquert ein Medium | Wenn Licht ein Medium durchquert unterscheidet man zwischen Transmission, Reflexion, Streuung und Absorption |
Sichtbares Licht | Das sichtbare Licht ist eine elektromagnetische Welle, die durch ihre Frequenz bzw. ihre Wellenlänge charakterisiert wird und durch das menschliche Auge erfasst werden kann |
Spektrum elektromagnetischer Wellen | Das elektromagnetische Spektrum ist eine Einteilung der elektromagnetischen Wellen nach deren Wellenlänge bzw. deren Frequenz |
Lichtgeschwindigkeit im Vakuum | Die Lichtgeschwindigkeit entspricht der Ausbreitungsgeschwindigkeit von Licht im Vakuum und beträgt endliche 299 792 458 m/s. Aus der Lichtgeschwindigkeit leitet sich heute die Länge von 1m ab. |
Wellenfunktion eines freien Teilchens | In der Quantenmechanik wird einem Teilchen zur Positionsbestimmung die komplexe Wellenfunktion Ψ(x, t) zugeordnet. |
Wellengleichung | Die Wellengleichung beschreibt eine Feldstärke an einem Ort in Abhängigkeit von der Zeit. Wir unterscheiden zwischen der ein- und der dreidimensionalen Wellengleichung. |