Abitur Gymnasium Bayern
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 6000
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Produkt einer Polynomfunktion mit einer Logarithmusfunktion
Gegeben ist die Funktion \(f:x \mapsto \left( {{x^3} - 8} \right) \cdot \left( {2 + \ln x} \right)\) mit maximalem Definitionsbereich D.
1. Teilaufgabe a) 1 BE - Bearbeitungszeit: 2:20
Geben Sie D an.
2. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Nullstellen von f
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 6009
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Stochastik
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Bernoullikette
Bei der Wintersportart Biathlon wird bei jeder Schießeinlage auf fünf Scheiben geschossen. Ein Biathlet tritt bei einem Einzelrennen zu einer Schießeinlage an, bei der er auf jede Scheibe einen Schuss abgibt. Diese Schießeinlage wird modellhaft durch eine Bernoullikette mit der Länge 5 und der Trefferwahrscheinlichkeit p beschrieben.
1. Teilaufgabe a.1) 3 BE - Bearbeitungszeit: 7:00
Geben Sie für die folgenden Ereignisse A und B jeweils einen Term an, der die Wahrscheinlichkeit des Ereignisses in Abhängigkeit von p beschreibt.
- Aussage A: „Der Biathlet trifft bei genau vier Schüssen.“
- Aussage B: „Der Biathlet trifft nur bei den ersten beiden Schüssen.“
2. Teilaufgabe a.2) 2 BE - Bearbeitungszeit: 4:40
Erläutern Sie anhand eines Beispiels, dass die modellhafte Beschreibung der Schießeinlage durch eine Bernoullikette unter Umständen der Realität nicht gerecht wird.
Aufgabe 6018
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Gegeben ist die Funktion f mit
\(f\left( x \right) = \dfrac{1}{{x + 1}} - \dfrac{1}{{x + 3}}{\text{ mit }}{D_f} = {\Bbb R}\backslash \left\{ { - 3; - 1} \right\}\).
Der Graph von f wird mit Gf bezeichnet.
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Zeigen Sie, dass f (x) zu jedem der drei folgenden Terme äquivalent ist:
- Term 1: \(\dfrac{2}{{\left( {x + 1} \right) \cdot \left( {x + 3} \right)}}\)
- Term 2: \(\dfrac{2}{{{x^2} + 4x + 3}}\)
- Term 3: \(\dfrac{1}{{0,5 \cdot {{\left( {x + 2} \right)}^2} - 0,5}}\)
2. Teilaufgabe b.1) 1 BE - Bearbeitungszeit: 2:20
Begründen Sie, dass die x-Achse horizontale Asymptote von Gf ist.
3. Teilaufgabe b.2) 1 BE - Bearbeitungszeit:2:20
Geben Sie die Gleichungen der vertikalen Asymptoten von Gf an.
4. Teilaufgabe b.3) 1 BE - Bearbeitungszeit: 2:20
Bestimmen Sie die Koordinaten des Schnittpunkts von Gf mit der y-Achse.
Die nachfolgende Abbildung 1 zeigt den Graphen der in \({\Bbb R}\) definierten Funktion
\(p:x \mapsto 0,5 \cdot {\left( {x + 2} \right)^2} - 0,5\), die die Nullstellen x=- 3 und x=-1 hat.
Für \(x \in {D_f}{\text{ gilt }}f\left( x \right) = \dfrac{1}{{p\left( x \right)}}\)
Gemäß der Quotientenregel gilt für die Ableitungen f‘ und p‘ die Beziehung
\(f'\left( x \right) = - \dfrac{{p'\left( x \right)}}{{{{\left( {p\left( x \right)} \right)}^2}}}{\text{ für x}} \in {{\text{D}}_f}\)
5. Teilaufgabe c.1) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f‘(x) und p‘(x), dass x=-2 einzige Nullstelle von f‘ ist.
6. Teilaufgabe c.2) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f‘(x) und p‘(x), dass Gf in \(\left] { - 3;2} \right[\) streng monoton steigend ist
7. Teilaufgabe c.3) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f‘(x) und p‘(x), dass Gf in \(\left] { - 2; - 1} \right[\) streng monoton fallend ist.
8. Teilaufgabe c.4) 2 BE - Bearbeitungszeit: 4:40
Geben Sie Lage des Extrempunkts von Gf an.
Geben Sie Art des Extrempunkts von Gf an.
9. Teilaufgabe d.1) 2 BE - Bearbeitungszeit: 4:40
Berechnen Sie f (-5) und f (-1,5)
10. Teilaufgabe d.2) 2 BE - Bearbeitungszeit: 4:40
Skizzieren Sie Gf unter Berücksichtigung der bisherigen Ergebnisse in Abbildung 1.
Aufgabe 6024
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Der Marketingchef einer Handelskette plant eine Werbeaktion, bei der ein Kunde die Höhe des Rabatts bei seinem Einkauf durch zweimaliges Drehen an einem Glücksrad selbst bestimmen kann. Das Glücksrad hat zwei Sektoren, die mit den Zahlen 5 bzw. 2 beschriftet sind (vgl. Abbildung).
Der Rabatt in Prozent errechnet sich als Produkt der beiden Zahlen, die der Kunde bei zweimaligem Drehen am Glücksrad erzielt. Die Zufallsgröße X beschreibt die Höhe dieses Rabatts in Prozent, kann also die Werte 4, 10 oder 25 annehmen. Die Zahl 5 wird beim Drehen des Glücksrads mit der Wahrscheinlichkeit p erzielt. Vereinfachend soll davon ausgegangen werden, dass jeder Kunde genau einen Einkauf tätigt und auch tatsächlich am Glücksrad dreht.
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Ermitteln Sie mithilfe eines Baumdiagramms die Wahrscheinlichkeit dafür, dass ein Kunde bei seinem Einkauf einen Rabatt von 10% erhält.
(Ergebnis: \(2 \cdot p - 2 \cdot {p^2}\) )
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Zeigen Sie, dass für den Erwartungswert E(X) der Zufallsgröße X gilt:
\(E\left( X \right) = 9 \cdot {p^2} + 12 \cdot p + 4\)
Die Geschäftsführung will im Mittel für einen Einkauf einen Rabatt von 16% gewähren.
3. Teilaufgabe c.1) 3 BE - Bearbeitungszeit: 7:00
Berechnen Sie für diese Vorgabe den Wert der Wahrscheinlichkeit p.
Berechnen Sie für diese Vorgabe den zugehörigen Mittelpunktswinkel des Sektors mit der Zahl 5.
Die Wahrscheinlichkeit, dass ein Kunde bei seinem Einkauf den niedrigsten Rabatt erhält, beträgt 1/9.
4. Teilaufgabe d) 4 BE - Bearbeitungszeit: 9:20
Bestimmen Sie, wie viele Kunden mindestens an dem Glücksrad drehen müssen, damit mit einer Wahrscheinlichkeit von mehr als 99 % mindestens einer der Kunden den niedrigsten Rabatt erhält.
Es drehen 180 Kunden am Glücksrad.
Teilaufgabe e) 2 BE - Bearbeitungszeit: 4:40
Berechnen Sie, mit welcher Wahrscheinlichkeit mindestens 10 und höchstens 25 dieser Kunden den niedrigsten Rabatt für ihren Einkauf erhalten.
Aufgabe 6001
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Graph und Funktionsgleichung ganzrationaler Funktionen
Gegeben sind die in \({\Bbb R}\) definierten Funktionen f, g und h mit
\(\eqalign{ & f\left( x \right) = {x^2} - x + 1 \cr & g\left( x \right) = {x^3} - x + 1 \cr & h\left( x \right) = {x^4} + {x^2} + 1 \cr} \)
Die unten stehende Abbildung zeigt den Graphen einer der drei Funktionen.
1. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20
Geben Sie an, um welche Funktion es sich handelt.
2. Teilaufgabe a.2) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie, dass der Graph die anderen beiden Funktionen nicht darstellt.
Die erste Ableitungsfunktion von h ist h‘.
3. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie den Wert von \(\int\limits_0^1 {h'\left( x \right)\,\,dx} \).
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 6010
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Stochastik
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Produktregel für mehrstufige Zufallsexperimente
Ein Moderator lädt zu seiner Talkshow drei Politiker, eine Journalistin und zwei Mitglieder einer Bürgerinitiative ein. Für die Diskussionsrunde ist eine halbkreisförmige Sitzordnung vorgesehen, bei der nach den Personen unterschieden wird und der Moderator den mittleren Platz einnimmt.
1. Teilaufgabe a) 1 BE - Bearbeitungszeit: 2:20
Geben Sie einen Term an, mit dem die Anzahl der möglichen Sitzordnungen berechnet werden kann, wenn keine weiteren Einschränkungen berücksichtigt werden.
Der Sender hat festgelegt, dass unmittelbar neben dem Moderator auf einer Seite die Journalistin und auf der anderen Seite einer der Politiker sitzen soll.
2. Teilaufgabe b) 4 BE - Bearbeitungszeit: 9:20
Berechnen Sie unter Berücksichtigung dieser weiteren Einschränkung die Anzahl der möglichen Sitzordnungen.
Aufgabe 6019
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Gegeben ist die Funktion
\(h:x \mapsto \dfrac{3}{{{e^{x + 1}} - 1}}{\text{ mit }}{D_h} = \left] { - 1; + \infty } \right[\)
Abbildung 1 zeigt den Graphen Gh von h.
1. Teilaufgabe a.1) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie anhand des Funktionsterms, dass \(\mathop {\lim }\limits_{x \to + \infty } h\left( x \right) = 0\) gilt.
2. Teilaufgabe a.2) 2 BE - Bearbeitungszeit: 4:40
Zeigen Sie rechnerisch für \(x \in {D_h}\) dass für die Ableitung h‘ von h gilt: \(h'\left( x \right) < 0\)
Gegeben ist ferner die in Dh definierte Integralfunktion
\({H_0} = x \mapsto \int\limits_0^x {h\left( t \right)} \,\,dt\).
3. Teilaufgabe b.1) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie ohne weitere Rechnung, dass folgende Aussagen wahr ist: Der Graph von H0 ist streng monoton steigend.
4. Teilaufgabe b.1) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie ohne weitere Rechnung, dass folgende Aussagen wahr ist: Der Graph von H0 ist rechts gekrümmt
5. Teilaufgabe c.1) 2 BE - Bearbeitungszeit: 4:40
Geben Sie die Nullstelle von H0 an.
6. Teilaufgabe c.2) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie näherungsweise mithilfe der Abbildung die Funktionswerte H0 (-0,5) sowie H0 (3) .
7. Teilaufgabe c.3) 2 BE - Bearbeitungszeit: 4:40
Skizzieren Sie in der Abbildung den Graphen von H0 im Bereich \( - 0,5 \leqslant x \leqslant 3\)
Aufgabe 6025
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Eine der Filialen der Handelskette befindet sich in einem Einkaufszentrum, das zu Werbezwecken die Erstellung einer Smartphone App in Auftrag geben will. Diese App soll die Kunden beim Betreten des Einkaufszentrums über aktuelle Angebote und Rabattaktionen der beteiligten Geschäfte informieren . Da dies mit Kosten verbunden ist, will der Finanzchef der Handelskette einer Beteiligung an der App nur zustimmen, wenn mindestens 15% der Kunden der Filiale bereit sind, diese App zu nutzen. Der Marketingchef warnt jedoch davor, auf eine Beteiligung an der App zu verzichten, da dies zu einem Imageverlust führen könnte.
Um zu einer Entscheidung zu gelangen, will die Geschäftsführung der Handelskette eine der beiden folgenden Nullhypothesen auf der Basis einer Befragung von 200 Kunden auf einem Signifikanzniveau von 10% testen:
- I „Weniger als 15% der Kunden sind bereit, die App zu nutzen.“
- II „Mindestens 15% der Kunden sind bereit, die App zu nutzen.“
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Nach Abwägung der möglichen Folgen, die der Finanzchef und der Marketingchef aufgezeigt haben, wählt die Geschäftsführung für den Test die Nullhypothese II . Bestimmen Sie die zugehörige Entscheidungsregel.
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Entscheiden Sie, ob bei der Abwägung, die zur Wahl der Nullhypothese II führte, die Befürchtung eines Imageverlusts oder die Kostenfrage als schwerwiegender erachtet wurde. Erläutern Sie Ihre Entscheidung.
Aufgabe 6002
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Parameter von Funktionen
1. Teilaufgabe a) 1 BE - 140 Bearbeitungszeit: 2:20
Geben Sie einen positiven Wert für den Parameter a an, sodass die in \({\Bbb R}\) definierte Funktion \(f:x \mapsto \sin \left( {ax} \right)\) eine Nullstelle in \(x = \dfrac{\pi }{6}\) hat.
2. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Ermitteln Sie den Wert des Parameters b, sodass die Funktion \(g:x \mapsto \sqrt {{x^2} - b} \) den maximalen Definitionsbereich \({\Bbb R}\backslash \left] { - 2;2} \right[\) besitzt.
3. Teilaufgabe c) 2 BE - Bearbeitungszeit: 4:40
Erläutern Sie, dass die in \({\Bbb R}\) definierte Funktion \(h:c \mapsto 4 - {e^x}\) den Wertebereich \(\left] { - \infty ;4} \right[\) besitzt.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 6011
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Stochastik
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Binomialverteilte Zufallsgröße
In einer Urne befinden sich vier rote und sechs blaue Kugeln. Aus dieser wird achtmal eine Kugel zufällig gezogen, die Farbe notiert und die Kugel anschließend wieder zurückgelegt.
1. Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Geben Sie einen Term an, mit dem die Wahrscheinlichkeit des Ereignisses „Es werden gleich viele rote und blaue Kugeln gezogen“ berechnet werden kann.
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Beschreiben Sie im Sachzusammenhang jeweils ein Ereignis, dessen Wahrscheinlichkeit durch den angegebenen Term berechnet werden kann.
- Aussage 1: \(1 - {\left( {\dfrac{3}{5}} \right)^8}\)
- Aussage 2: \({\left( {\dfrac{3}{5}} \right)^8} + 8 \cdot \dfrac{2}{5} \cdot {\left( {\dfrac{3}{5}} \right)^7}\)
Aufgabe 6020
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
In einem Labor wird ein Verfahren zur Reinigung von mit Schadstoffen kontaminiertem Wasser getestet. Die Funktion
\(h:x \mapsto \dfrac{3}{{{e^{x + 1}} - 1}}{\text{ mit }}{D_h} = \left] { - 1; + \infty } \right[\)
beschreibt für \(x \geqslant 0\) modellhaft die zeitliche Entwicklung des momentanen Schadstoffabbaus in einer bestimmten Wassermenge. Dabei bezeichnet h(x) die momentane Schadstoffabbaurate in Gramm pro Minute und x die seit Beginn des Reinigungsvorgangs vergangene Zeit in Minuten.
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Bestimmen Sie auf der Grundlage des Modells den Zeitpunkt x, zu dem die momentane Schadstoffabbaurate auf 0,01 Gramm pro Minute zurückgegangen ist.
Die in \({\Bbb R}\backslash \left\{ { - 3;1} \right\}\) definierte Funktion
\(k:x \mapsto 3 \cdot \left( {\dfrac{1}{{x + 1}} - \dfrac{1}{{x + 3}}} \right) - 0,2\)
stellt im Bereich \( - 0,5 \leqslant x \leqslant 2\) eine gute Näherung für die Funktion h dar.
2. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Beschreiben Sie, wie der Graph der Funktion k aus dem Graphen der Funktion \(f\left( x \right) = \dfrac{1}{{x + 1}} - \dfrac{1}{{x + 3}}{\text{ mit }}{D_f} = {\Bbb R}\backslash \left\{ { - 3; - 1} \right\}\) hervorgeht.
3. Teilaufgabe c.1) 4 BE - Bearbeitungszeit: 9:20
Berechnen Sie einen Näherungswert für \(\int\limits_0^1 {h\left( x \right)} \,\,dx\), indem Sie den Zusammenhang \(\int\limits_0^1 {h\left( x \right)} \,\,dx \approx \int\limits_0^1 {k\left( x \right)} \,\,dx\) verwenden.
4. Teilaufgabe c.2) 1 BE - Bearbeitungszeit: 2:20
Geben Sie die Bedeutung dieses Werts im Sachzusammenhang an.
Aufgabe 6026
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Die beiden Diagramme zeigen für die Bevölkerungsgruppe der über 14-Jährigen in Deutschland Daten zur Altersstruktur und zum Besitz von Mobiltelefonen.
Diagramm 1:
Diagramm 2:
Aus den über 14-Jährigen in Deutschland wird eine Person zufällig ausgewählt. Betrachtet werden folgende Ereignisse:
- Ereignis M: „Die Person besitzt ein Mobiltelefon.“
- Ereignis S: „Die Person ist 65 Jahre oder älter.“
- Ereignis E: „Mindestens eines der Ereignisse M und S tritt ein.“
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Geben Sie an, welche zwei der folgenden Mengen 1 bis 6 jeweils das Ereignis E beschreiben.
- Menge 1: \(M \cap S\)
- Menge 2: \(M \cup S\)
- Menge 3: \(\overline {M \cup S} \)
- Menge 4: \(\left( {M \cap \overline S } \right) \cup \left( {\overline M \cap S} \right) \cup \left( {\overline M \cap \overline S } \right)\)
- Menge 5: \(\left( {M \cap S} \right) \cup \left( {M \cap \overline S } \right) \cup \left( {\overline M \cap S} \right)\)
- Menge 6: \(\overline {M \cap S} \)
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Entscheiden Sie anhand geeigneter Terme und auf der Grundlage der vorliegenden Daten, welche der beiden folgenden Wahrscheinlichkeiten größer ist. Begründen Sie Ihre Entscheidung.
- p1 ist die Wahrscheinlichkeit dafür, dass die ausgewählte Person ein Mobiltelefon besitzt, wenn bekannt ist, dass sie 65 Jahre oder älter ist.
- p2 ist die Wahrscheinlichkeit dafür, dass die ausgewählte Person 65 Jahre oder älter ist, wenn bekannt ist, dass sie ein Mobiltelefon besitzt.
3. Teilaufgabe c.1) 4 BE - Bearbeitungszeit: 9:20
Erstellen Sie zu dem beschriebenen Sachverhalt für den Fall, dass das Ereignis E mit einer Wahrscheinlichkeit von 98% eintritt, eine vollständig ausgefüllte Vierfeldertafel
4. Teilaufgabe c.2) 1 BE - Bearbeitungszeit: 2:20
Bestimmen Sie für diesen Fall die Wahrscheinlichkeit PS(M) .
5. Teilaufgabe d) 1 BE - Bearbeitungszeit: 2:20
Schraffieren Sie in der Abbildung die Fläche, die dem Ereignis \(\overline M \cap S\) entspricht.