Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Prüfungsvorbereitung Matura, Abitur und STEOP
  3. Matura Österreich BHS - Angewandte Mathematik
  4. Teil A Aufgaben für alle Cluster
  5. Aufgabe 4181

Aufgabe 4181

Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


Pelletsheizung - Aufgabe A_068

Teil c

Bei einer Lieferung werden die Pellets in einer Höhe von 2 m durch einen Einblasstutzen in einen Lagerraum waagrecht eingeblasen. Eine aufgehängte Schutzmatte soll dabei verhindern, dass die Pellets brechen, wenn die Einblasgeschwindigkeit zu groß ist. Die Flugbahn eines Pellets kann modellhaft durch den Graphen der folgenden quadratischen Funktion beschrieben werden:

\(h\left( x \right) = - \dfrac{{5 \cdot {x^2}}}{{{v_0}^2}} + 2\)

mit

x ... waagrechte Entfernung vom Einblasstutzen in m
h(x) ... Flughöhe eines Pellets über dem Boden bei der Entfernung x in m
v0 ... Einblasgeschwindigkeit in m/s

1. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie im nachstehenden Koordinatensystem den Graphen der Funktion h für eine Einblasgeschwindigkeit von v0 = 4 m/s ein.
[1 Punkt]

Strecke f Strecke f: Strecke A, D Strecke g Strecke g: Strecke D, E Strecke h Strecke h: Strecke B, C Punkt G Punkt G: Punkt auf yAchse Punkt G Punkt G: Punkt auf yAchse h(x) in m Text1 = “h(x) in m” Schutzmatte Text2 = “Schutzmatte” Boden Text3 = “Boden” x in m Text4 = “x in m” Einblasstutzen Text5 = “Einblasstutzen”

 


Bei einer anderen Einblasgeschwindigkeit trifft das Pellet gerade noch das untere Ende der 1 m langen Schutzmatte.

2. Teilaufgabe - Bearbeitungszeit 5:40
Bestimmen Sie diese Einblasgeschwindigkeit.
[1 Punkt]

Lösungsweg

1. Teilaufgabe:

Um den Graphen einzeichnen zu können, erstellen wir eine Wertetabelle:

x h(x)
0 \(h\left( {x = 0} \right) = - \dfrac{{5 \cdot {0^2}}}{4} + 2 = 2\)
1 \(h\left( {x = 1} \right) = - \dfrac{{5 \cdot {1^2}}}{{{4^2}}} + 2 = - \dfrac{5}{{16}} + \dfrac{{32}}{{16}} = \dfrac{{27}}{{16}} = 1,6875\)
\(\eqalign{ & 0 = - \dfrac{{5 \cdot {x^2}}}{{16}} + 2 \cr & \dfrac{5}{{16}} \cdot {x^2} = 2 \cr & x = \sqrt {\dfrac{{2 \cdot 16}}{5}} \approx 2,5298 \cr} \) h(x)=0

 

Wenn wir obige Punkte in die Illustration einzeichnen, dann erhalten wir folgenden Graph der Flugbahn von einem Pellet:

Funktion p p(x) = Wenn(0 < x < 2.5, -5x² / 16 + 2) Strecke f Strecke f: Strecke A, D Strecke g Strecke g: Strecke D, E Strecke h Strecke h: Strecke B, C Punkt G Punkt G: Punkt auf yAchse Punkt G Punkt G: Punkt auf yAchse h(x) in m Text1 = “h(x) in m” Schutzmatte Text2 = “Schutzmatte” Boden Text3 = “Boden” x in m Text4 = “x in m” Einblasstutzen Text5 = “Einblasstutzen”

2. Teilaufgabe:

Wir kennen die Gleichung der Wegbahn:

\(h\left( x \right) = - \dfrac{{5 \cdot {x^2}}}{{{v_0}^2}} + 2\)

Das Pellet trifft gerade noch die Matte, wenn seine Bahn durch den Punkt (2 | 1,5) verläuft. Wie setzen diesen x und y Wert ein und machen v0 explizit:

\(\eqalign{ & 1,5 = - \dfrac{{5 \cdot {2^2}}}{{{v_0}^2}} + 2\,\,\,\,\,\left| { - 2} \right. \cr & - 0,5 = - \dfrac{{5 \cdot {2^2}}}{{{v_0}^2}}\,\,\,\,\,\left| { \cdot {v_0}^2} \right. \cr & - 0,5 \cdot {v_0}^2 = - 20\,\,\,\,\,\left| {: - 0,5} \right. \cr & {v_0}^2 = \dfrac{{20}}{{0,5}} = 40 \cr & {v_0} = \sqrt {40} \approx \pm 6,32 \cr} \)

 

→ Die gesuchte Einblasgeschwindigkeit beträgt 6,3 m/s

Funktion p p(x) = Wenn(0 < x < 3, -5x² / 39.99 + 2) Strecke f Strecke f: Strecke A, D Strecke g Strecke g: Strecke D, E Strecke h Strecke h: Strecke B, C Punkt C C = (2, 1.5) Punkt C C = (2, 1.5) Punkt C C = (2, 1.5) Punkt C C = (2, 1.5) Punkt G Punkt G: Punkt auf yAchse Punkt G Punkt G: Punkt auf yAchse h(x) in m Text1 = “h(x) in m” Schutzmatte Text2 = “Schutzmatte” Boden Text3 = “Boden” x in m Text4 = “x in m” Einblasstutzen Text5 = “Einblasstutzen”

Ergebnis

Die richtige Lösung lautet:

1. Teilaufgabe
Strecke f Strecke f: Strecke A, D Strecke g Strecke g: Strecke D, E Strecke h Strecke h: Strecke B, C Punkt G Punkt G: Punkt auf yAchse Punkt G Punkt G: Punkt auf yAchse h(x) in m Text1 = “h(x) in m” Schutzmatte Text2 = “Schutzmatte” Boden Text3 = “Boden” x in m Text4 = “x in m” Einblasstutzen Text5 = “Einblasstutzen”

2. Teilaufgabe
Bei einer Einblasgeschwindigkeit von 6,32... m/s trifft das Pellet gerade noch das untere Ende der Schutzmatte.


Lösungsschlüssel

1. Teilaufgabe
1 × B1: für das richtige Einzeichnen des Graphen der Funktion h

2. Teilaufgabe
1 × B2: für das richtige Bestimmen der Einblasgeschwindigkeit

Weiterführende Informationen

Pelletsheizung - Aufgabe A_068
Polynomfunktion 2. Grades
kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
Mathematik Zentralmatura BHS - September 2019 - kostenlos vorgerechnet
Quadratische Funktion
Quadratische Gleichungen
BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 3.4
BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.9
Fragen oder Feedback

maths2mind®

Kostenlos und ohne Anmeldung
Lehrstoff und Aufgabenpool

verständliche Erklärungen
schneller Lernerfolg
mehr Freizeit

/
Bild
Illustration - Lady with Laptop
/

Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

  • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
  • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
  • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
  • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
  • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
  • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
  • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
  • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
  • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
  • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
  • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
  • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
  • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
  • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
  • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

/

Fußzeile

  • FAQ
  • Über maths2mind
  • Cookie Richtlinie
  • Datenschutz
  • Impressum
  • AGB
  • Blog

© 2022 maths2mind GmbH