Abrissbirnen - Aufgabe B_012
Aufgabe B_012: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe mit 3 Teilaufgaben
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4093
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Abrissbirnen - Aufgabe B_012
Abrissbirnen sind kugel- oder birnenförmige Werkzeuge zum Abreisen von Gebäuden.
Teil a
Eine Abrissbirne hat die Form einer Kugel mit dem Durchmesser d. Die Masse m und die Dichte ϱ der Kugel sind bekannt. Die Masse ist das Produkt von Volumen und Dichte.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Formel zur Berechnung des Durchmessers d aus m und ϱ .
d= ……
[1 Punkt]
Eine einfache Regel besagt: „Um die Masse einer Kugel zu verdoppeln, ist ihr Durchmesser um rund ein Viertel zu vergrößern.“
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie allgemein, dass diese Regel richtig ist.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 4094
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Abrissbirnen - Aufgabe B_012
Abrissbirnen sind kugel- oder birnenförmige Werkzeuge zum Abreisen von Gebäuden.
Teil b
Eine andere Abrissbirne kann als Körper modelliert werden, der durch Rotation des Graphen der Polynomfunktion f mit \(f\left( x \right) = a \cdot {x^4} + b \cdot {x^3} + c \cdot {x^2} + d \cdot x + e\) um die x-Achse entsteht.
Dabei gilt: A = (0|0), B = (1,1| 2,2), C = (9,4|5,1), D = (12| 0). Im Punkt C hat die Abrissbirne den größten Durchmesser.
1. Teilaufgabe - Bearbeitungszeit 11:20
Erstellen Sie mithilfe der Informationen zu A, B, C und D ein Gleichungssystem zur Berechnung der Koeffizienten der Polynomfunktion f.
[2 Punkte]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Koeffizienten von f.
[1 Punkt]
Aufgabe 4095
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Abrissbirnen - Aufgabe B_012
Abrissbirnen sind kugel- oder birnenförmige Werkzeuge zum Abreisen von Gebäuden.
Teil c
Durch Rotation des Graphen der Funktion g im Intervall [1; b] um die x-Achse entsteht die Form einer weiteren Abrissbirne (siehe nachstehende Abbildung):
\(g\left( x \right) = - 0,00157 \cdot {x^4} + 0,03688 \cdot {x^3} - 0,29882 \cdot {x^2} + 1,26325 \cdot x\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Nullstelle b.
[1 Punkt]
Das Volumen dieser Abrissbirne soll verkleinert werden. Durch Rotation des Graphen der Funktion g im Intervall [1; a] um die x-Achse entsteht die Form einer Abrissbirne mit einem um 10 dm3 kleineren Volumen.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die in der obigen Abbildung dargestellte Stelle a.
[1 Punkt]