AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.3
Aufgaben zum Inhaltsbereich AG 3.3: Definition der Rechenoperationen mit Vektoren (Addition, Multiplikation mit einem Skalar, Skalarmultiplikation) kennen, Rechenoperationen verständig einsetzen und (auch geometrisch) deuten können
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 3.3
Vektoren
AG 3.3: Definition der Rechenoperationen mit Vektoren (Addition, Multiplikation mit einem Skalar, Skalarmultiplikation) kennen, Rechenoperationen verständig einsetzen und (auch geometrisch) deuten können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgaben
Aufgabe 1393
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Normalvektoren
Gegeben ist der Vektor \(\overrightarrow a = \left( {\begin{array}{*{20}{c}} { - 1}\\ 3\\ 5 \end{array}} \right)\)
- Aussage 1: \(\overrightarrow {{b_1}} = \left( {\begin{array}{*{20}{c}} 2\\ { - 1}\\ 1 \end{array}} \right)\)
- Aussage 2: \(\overrightarrow {{b_2}} = \left( {\begin{array}{*{20}{c}} 0\\ 0\\ { - 5} \end{array}} \right)\)
- Aussage 3: \(\overrightarrow {{b_3}} = \left( {\begin{array}{*{20}{c}} 0\\ 5\\ { - 3} \end{array}} \right)\)
- Aussage 4: \(\overrightarrow {{b_4}} = \left( {\begin{array}{*{20}{c}} 5\\ 0\\ 1 \end{array}} \right)\)
- Aussage 5: \(\overrightarrow {{b_5}} = \left( {\begin{array}{*{20}{c}} { - 1}\\ 3\\ 0 \end{array}} \right)\)
Aufgabenstellung:
Welche(r) der oben stehenden Vektoren \(\overrightarrow {{b_1}} \) ... \(\overrightarrow {{b_5}}\) steht/stehen normal auf den Vektor \(\overrightarrow a\) ? Kreuzen Sie den / die zutreffende(n) Vektor(en) an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 1211
AHS - 1_211 & Lehrstoff: AG 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Geometrische Deutung
Gegeben sind zwei Vektoren: \(\overrightarrow a ,\,\,\overrightarrow b \,\, \in {{\Bbb R}^2}\)
- Aussage 1: Der Vektor \(3 \cdot \overrightarrow a \) ist dreimal so lang wie der Vektor \(\overrightarrow a\).
- Aussage 2: Das Produkt \(\overrightarrow a \cdot \overrightarrow b\) ergibt einen Vektor.
- Aussage 3: Die Vektoren \(\overrightarrow a\) und \( - 0,5 \cdot \overrightarrow a\) besitzen die gleiche Richtung und sind gleich orientiert.
- Aussage 4: Die Vektoren \(\overrightarrow a\) und \( - 2 \cdot \overrightarrow a\) sind parallel.
- Aussage 5: Wenn \(\overrightarrow a\) und \(\overrightarrow b\) einen rechten Winkel einschließen, so ist deren Skalarprodukt größer als null.
Aufgabenstellung
Welche der obenstehenden Aussagen über Vektoren sind korrekt? Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1617
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kräfte
An einem Massenpunkt M greifen drei Kräfte an. Diese sind durch die Vektoren \(\overrightarrow a ,\overrightarrow b {\text{ und }}\overrightarrow c\) gegeben.
Aufgabenstellung:
Zeichnen Sie in der nachstehenden Abbildung einen Kraftvektor \(\overrightarrow d \) so ein, dass die Summe aller vier Kräfte (in jeder Komponente) gleich null ist!
Aufgabe 1489
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoraddition
Die unten stehende Abbildung zeigt zwei Vektoren \(\overrightarrow {{v_1}}\) und \(\overrightarrow v\)
Aufgabenstellung:
Ergänzen Sie in der Abbildung einen Vektor \(\overrightarrow {{v_2}}\) so, dass \(\overrightarrow {{v_1}} + \overrightarrow {{v_2}} = \overrightarrow v \) ist!
Aufgabe 1570
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. September 2017 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren in der Ebene
Die unten stehende Abbildung zeigt zwei Vektoren \(\overrightarrow a\) und \(\overrightarrow b\)
Aufgabenstellung:
Zeichnen Sie in die Abbildung einen Vektor \(\overrightarrow c \) so ein, dass die Summe der drei Vektoren den Nullvektor ergibt, also \(\overrightarrow a + \overrightarrow b + \overrightarrow c = \left( {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right)\) gilt.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 1443
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren
In der unten stehenden Abbildung sind die Vektoren \(\overrightarrow a ,\,\,\overrightarrow b {\rm{ und }}\overrightarrow c \) als Pfeile dargestellt.
Aufgabenstellung:
Stellen Sie den Vektor \(\overrightarrow d = \overrightarrow a + \overrightarrow b - 2 \cdot \overrightarrow c \) als Pfeil dar!
Aufgabe 1118
AHS - 1_118 & Lehrstoff: AG 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren
Gegeben sind die Vektoren \(\overrightarrow a\)und \(\overrightarrow b\), die in der untenstehenden Abbildung als Pfeile dargestellt sind.
- Aufgabenstellung:
Stellen Sie \(\dfrac{1}{2} \cdot \overrightarrow b - \overrightarrow a\) ausgehend vom Punkt C durch einen Pfeil dar!
Aufgabe 1057
AHS - 1_057 & Lehrstoff: AG 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren im Dreieck
Ein Dreieck ABC ist rechtwinklig mit der Hypotenuse AB.
- Aussage 1: \(\left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {AC} } \right|\)
- Aussage 2: \({\overrightarrow {AB} ^2} = {\overrightarrow {AC} ^2} + {\overrightarrow {BC} ^2}\)
- Aussage 3: \(\overrightarrow {AC} = \overrightarrow {BC}\)
- Aussage 4: \(\overrightarrow {AB} = \overrightarrow {BC} - \overrightarrow {AC} \)
- Aussage 5: \(\overrightarrow {AC} \cdot \overrightarrow {BC} = 0\)
Aufgabenstellung:
Welche der folgenden Aussagen sind jedenfalls richtig? Kreuzen Sie die beiden entsprechenden Aussagen an!
Aufgabe 1074
AHS - 1_074 & Lehrstoff: AG 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren in einem Quader
Die Grundfläche ABCD des dargestellten Quaders liegt in der xy-Ebene. Festgelegt werden die Vektoren \(\overrightarrow a = \overrightarrow {AB} ;\,\,\,\,\,\overrightarrow b = \overrightarrow {AD} ;{\text{ und }}\overrightarrow c = \overrightarrow {AE}\)
- Aussage 1: \(\overrightarrow {TC} = t \cdot \overrightarrow c\)
- Aussage 2: \(\overrightarrow {AR} = t \cdot \overrightarrow a\)
- Aussage 3: \(\overrightarrow {EG} = s \cdot \overrightarrow a + t \cdot \overrightarrow b\)
- Aussage 4: \(\overrightarrow {BT} = s \cdot \overrightarrow a + t \cdot \overrightarrow b\)
- Aussage 5: \(\overrightarrow {TR} = s \cdot \overrightarrow b + t \cdot \overrightarrow c\)
Aufgabenstellung:
Welche der folgenden Darstellungen ist/ sind möglich, wenn \(s,\,\,t \in \mathbb{R}\) gilt? Kreuzen Sie die zutreffende(n) Aussage(n)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 1115
AHS - 1_115 & Lehrstoff: AG 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadrat
A, B, C und D sind Eckpunkte des unten abgebildeten Quadrates, M ist der Schnittpunkt der Diagonalen.
- Aussage 1: \(C = A + 2 \cdot \overrightarrow {AM}\)
- Aussage 2: \(B = C + \overrightarrow {AD}\)
- Aussage 3: \(M = D - \frac{1}{2} \cdot \overrightarrow {DB}\)
- Aussage 4: \(\overrightarrow {AM} \cdot \overrightarrow {MB} = 0\)
- Aussage 5: \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 0\)
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1073
AHS - 1_073 & Lehrstoff: AG 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rechnen mit Vektoren
Gegeben sind die Vektoren \(\overrightarrow r ,\,\,\overrightarrow s {\text{ und }}\overrightarrow t \)
- Aussage 1: \(\overrightarrow t + \overrightarrow s + \overrightarrow r = \overrightarrow 0\)
- Aussage 2: \(\overrightarrow t + \overrightarrow s = - \overrightarrow r \)
- Aussage 3: \(\overrightarrow t - \overrightarrow s = \overrightarrow r \)
- Aussage 4: \(\overrightarrow t - \overrightarrow r = \overrightarrow s \)
- Aussage 5: \(\overrightarrow t = \overrightarrow s + \overrightarrow r \)
Aufgabenstellung:
Kreuzen Sie die beiden für diese Vektoren zutreffenden Aussagen an!
Aufgabe 1515
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 3. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren
In der Ebene werden auf einer Geraden in gleichen Abständen nacheinander die Punkte A, B, C und D markiert. Es gilt also: \(\overrightarrow {AB} = \overrightarrow {BC} = \overrightarrow {CD} \)
Die Koordinaten der Punkte A und C sind bekannt. \(A = \left( {\left. 3 \right|1} \right);\,\,\,\,\,C = \left( {7\left| 8 \right.} \right)\)
Aufgabenstellung:
Berechnen Sie die Koordinaten von D!