Bernoulli Experiment
Ein Bernoulli Experiment ist ein Zufallsexperiment, welches genau 2 mögliche Ergebnisse hat: Treffer / Niete
Hier findest du folgende Inhalte
Formeln
Einstufige Zufallsexperimente und deren Wahrscheinlichkeiten
Ein Zufallsexperiment ist ein grundsätzlich beliebig oft wiederholbarer "Versuch", welcher unter identischen Bedingungen zu 2 oder mehreren nicht vorhersagbaren Ergebnissenführt. Dabei ist das zeitlich jeweils nächste Ergebnis unabhängig von den zeitlich vorhergehenden Ergebnissen.
Ergebnismenge \(\Omega\)
Ein Ergebnis ist der spezifische Ausgang von einem Zufallsexperiment. Die Ergebnismenge, auch Ergebnisraum genannt, ist die Menge aller möglichen Ergebnisse Ai eines Zufallsexperiments, die grundsätzlich auftreten können.
\(\Omega = \left\{ {{A_1},{A_2},...,{A_n}} \right\}\)
- Ergebnis eines einmaligen Würfelwurfs: "2 Augen"
- Die Menge aller möglichen Ergebnisse - also der Ergebnisraum \(\Omega\) - beim Würfeln ist \(\Omega = \left\{ {1;2;3;4;5;6} \right\}\)
- Die Menge aller möglichen Ergebnisse - also der Ergebnisraum \(\Omega\) - beim Wurf einer Münze ist \(\Omega = \left\{ {{\rm{Kopf;Zahl}}} \right\}\)
- Die Menge aller möglichen Ergebnisse - also der Ergebnisraum \(\Omega\) - beim Würfeln mit 2 Würfeln ist \(\Omega = \left\{ {\left( {1;1} \right);\left( {1;2} \right);...;\left( {1;6} \right);\left( {2;1} \right);\left( {2;2} \right);....\left( {6;6} \right)} \right\}\)
Ereignismenge \(P\left( \Omega \right)\)
Ereignismengen, auch Ereignisräume genannt, sind Teilmengen der Ergebnismenge.
\(P\left( \Omega \right) = \left\{ {A\left| {A \subseteq \Omega } \right.} \right\}\)
Beispiel Würfel:
- Ergebnismenge: \(\Omega = \left\{ {{1},{2},...,{6}} \right\}\)
- Ereignismenge "nur" die gerade Augenzahl: \(\Omega = \left\{ {{2},{4},{6}} \right\}\)
Elementarereignis
Das Elementarereignis Ai ist eine Teilmenge der Ergebnismenge \(\Omega\) mit genau einem Element.
\({A_i} \in \Omega\)
Zur Veranschaulichung:
Wirft man einen Würfel, so umfasst die Ergebnismenge \(\Omega = \left\{ {1,2,3,4,5,6} \right\}\) genau 6 Elementarereignisse : 1 Auge, 2 Augen, 3 Augen, 4 Augen, 5 Augen, 6 Augen
Gegenereignis
Das Gegenereignis A‘ tritt genau dann ein, wenn das Ereignis A nicht eintritt. Alle Elemente des Ereignisses A und seines Gegenereignisses A‘ ergeben zusammen die Ergebnismenge \(\Omega\).
\(A' + A = \Omega\)
Die Verneinung vom Ereignis E heißt Gegenereignis \(\overline E \). Für ein Ereignis E und sein Gegenereignis \(\overline E \) gilt folgender Zusammenhang:
\(P\left( E \right) = 1 - P\left( {\overline E } \right)\)
Wahrscheinlichkeit
Die Wahrscheinlichkeit ist ein Maß dafür, wie wahrscheinlich der Eintritt eines Ereignisses ist. Bei der wiederholten Durchführung eines Zufallsexperiments tritt eine Abfolge von einzelnen Elementarereignissen Ai auf. Man kann zwar nicht vorhersagen genau welches Elementarereignis als nächstes auftritt, aber man kann eine Aussage darüber machen, wie häufig ein bestimmtes Elementarereignis im Vergleich zu den anderen Elementarereignissen auftritt. Die Wahrscheinlichkeit nach Laplace P(A)=P(X=x) leitet sich aus der Häufigkeit eines bestimmten Elementarereignisses, im Verhältniss zur Häufigkeit aller Elementarereignisse ab.
\(0 \leqslant P\left( A \right) \leqslant 1\) | Die Wahrscheinlichkeit dafür, dass ein beliebiges Elementarereignis eintritt, muss zwischen 0 und 1 liegen |
\(P\left( \Omega \right) = 1\) | Die Wahrscheinlichkeit dafür, dass alle Elementarereignisse eintreten, muss 1 sein. |
Gleichwahrscheinlichkeit
Eine Gleichwahrscheinlichkeit liegt vor, wenn jedes der n Elementarereignisse die gleiche Wahrscheinlichkeit 1/n hat.
Unbedingte Wahrscheinlichkeit P(A)
Die unbedingte Wahrscheinlichkeit gibt an, wie hoch die Wahrscheinlichkeit für den Eintritt eines Ereignisses ist, unabhängig von irgend welchen Vorbedingungen.
Beispiel: Wie hoch ist die Wahrscheinlichkeit, dass morgen in Wien die Temperatur 30° C überschreitet? Antwort: Nieder, weil es nur ca. 30 derartige Hitzetage pro Jahr gibt.
Bedingte Wahrscheinlichkeit P(B│A)
Die bedingte Wahrscheinlichkeit P(B|A) ist die Wahrscheinlichkeit für das Eintreten von B, unter der Voraussetzung (Bedingung), dass bereits das Ereignis A eingetreten ist, also bei von einander stochastisch abhängigen Ereignissen
\(P\left( {{B}\left| {{A}} \right.} \right) = \dfrac{{P\left( {{A} \cap {B}} \right)}}{{P\left( {{A}} \right)}}\)
Obige Formel ist lediglich die umformulierte Multiplikationsregeln für Wahrscheinlichkeiten ("Und Regel").
Beispiel: Heute wird in Wien eine Temperatur von 35° C gemessen. Wie hoch ist die Wahrscheinlichkeit, dass morgen in Wien die Temperatur 30° C überschreitet? Antwort: Hoch, da sich die Klimalage nur alle paar Tage verändert.
Gegenwahrscheinlichkeit
Die Gegenwahrscheinlichkeit vom Ereignis A ist die Wahrscheinlichkeit dafür, dass das Ereignis A nicht eintritt. Oft ist es einfacher die Gegenwahrscheinlichkeit von einem Ereignis auszurechnen und daraus die Wahrscheinlichkeit des Ereignisses selbst zurückzurechnen.
\(\eqalign{ & P\left( {A'} \right) = 1 - P\left( A \right) \cr & P\left( A \right) = 1 - P\left( {A'} \right) \cr}\)
Anmerkung zur Notation:
\(P\left( {A'} \right) = P\left( {\neg A} \right)\)
Bernoulli Experiment
Ein Bernoulli Experiment ist ein Zufallsexperiment, welches
- genau 2 mögliche Ergebnisse hat: Treffer / Niete.
- Die Wahrscheinlichkeit p für einen Treffer oder für eine Niete muss aber keinesfalls 50:50 bzw. 0,5 sein. Die Formel für die Laplace Wahrscheinlichkeit ("günstige" durch "mögliche") gilt auch für Bernoulli Experimente, da diese ja nur ein Sonderfall vom Laplace Experiment sind.
Beispiel: gerade und ungerade Tage im Jänner:
Jeder Tag muss entweder gerade oder ungerade sein, aber es gibt im Jänner 15 gerade aber 16 ungerade Tage.
\(\eqalign{ & P\left( {X = {\text{gerader Tag}}} \right) = \dfrac{{15}}{{31}} \cr & P\left( {X = {\text{ungerader Tag}}} \right) = \dfrac{{16}}{{31}} \cr} \)
Gegenwahrscheinlichkeiten in einem Bernoulli Experiment
Wenn in einem Bernoulli Experiment p die Wahrscheinlichkeit für einen Treffer ist, dann ist 1-p die Wahrscheinlichkeit für eine Niete, man nennt dies die Gegenwahrscheinlichkeit.
Laplace Experiment
Ein Laplace Experiment ist ein Zufallsexperiment, welches n mögliche Ergebnisse hat, wobei die Wahrscheinlichkeit für jedes der n Ergebnisse gleich groß ist. Man spricht dann von der Laplace Wahrscheinlichkeit.
Beispiel für ein Laplace Experiment: Würfelwurf; Es gibt 6 mögliche Elementarereignisse, die die gleiche Wahrscheinlichkeit haben. 1 Auge, 2 Augen, 3 Augen, 4 Augen, 5 Augen, 6 Augen
Laplace Wahrscheinlichkeit
Die Laplace Wahrscheinlichkeit P(E) gibt den relativen Anteil der „günstigen“ Versuchsausgänge zu den „möglichen“ Versuchsausgängen an. Sie ist also eine Maßzahl für die Chance, dass ein bestimmtes Ereignis E bei mehreren möglichen Ereignissen eintritt. Alle Elementarergebnisse / Ausgänge müssen die gleiche Eintrittswahrscheinlichkeit haben.
\(P\left( E \right) = \dfrac{{{\text{Anzahl der günstigen Fälle}}}}{{{\text{Anzahl der möglichen Fälle}}}}\)
wobei: \(0 \leqslant P\left( E \right) \leqslant 1{\text{ und }}P\left( 0 \right) = 0{\text{ sowie P}}\left( \Omega \right) = 1\)
E | Ereignisse A, B |
P(A) | Wahrscheinlichkeit für das Eintreten vom Ereignis A |
P(A)=1 | Das Ereignis tritt sicher ein |
P(A)=0 | Das Ereignis tritt sicher nicht ein |
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgaben
Aufgabe 1050
AHS - 1_050 & Lehrstoff: WS 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bernoulli-Experiment
Beim Realisieren eines Bernoulli-Experiments tritt Erfolg mit der Wahrscheinlichkeit p mit 0 < p < 1 ein. Die Werte der binomialverteilten Zufallsvariablen X beschreiben die Anzahl der Erfolge beim n-maligen unabhängigen Wiederholen des Experiments. E bezeichnet den Erwartungswert, V die Varianz und σ die Standardabweichung.
- Aussage 1: \(E\left( X \right) = \sqrt {n \cdot p}\)
- Aussage 2: \(V\left( X \right) = n \cdot p \cdot \left( {1 - p} \right)\)
- Aussage 3: \(P\left( {X = 0} \right) = 0\)
- Aussage 4:\(P\left( {X = 1} \right) = p\)
- Aussage5: \(V\left( X \right) = {\sigma ^2}\)
Aufgabenstellung:
Kreuzen Sie die beiden für n > 1 zutreffenden Aussagen an!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!