Betrag komplexer Zahlen
Der Betrag einer komplexen Zahl |z| entsricht der Länge des Vektor z in der Gauß'schen Ebene und errechnet sich gemäß dem pythagoräischem Lehrsatz, wobei Real- und Imaginärteil den beiden Katheten im rechtwinkeligen Dreieck entsprechen.
Hier findest du folgende Inhalte
Formeln
Komplexe Zahlen
Die Gleichung \({x^2} = - 1\) kann im Bereich der reellen Zahlen nicht gelöst werden, da x dabei die Wurzel aus einer negativen Zahl wäre, was unzulässig ist.
\({x^2} = - 1 \to x = \sqrt { - 1}\)
Leonhard Euler führte den Begriff \({i^2} = - 1\) in die Mathematik ein und definierte den Ausdruck \(z = a + i \cdot b = a + b \cdot \sqrt { - 1} \). Eine komplexe Zahl setzt sich somit aus einem Realteil und einem Imaginärteil zusammen. a und b sind dabei reelle Zahlen, i ist die sogenannte imaginäre Einheit. Die reellen Zahlen sind jener Spezialfall der komplexen Zahlen, für die der Imaginärteil der komplexen Zahl Null ist.
Definition der imaginären Einheit i
Die imaginäre Einheit i ist jene Zahl, deren Quadrat gleich -1 ist, also \({i^2} = - 1\). Das ist eine Definition. Wir können damit Wurzeln aus negativen reellen Zahlen ziehen und Gleichungen vom Typ x2+1=0 lösen.
\(\eqalign{ & {x^2} + 1 = 0 \cr & {x^2} = - 1\,\,\,\,\,\left| {\sqrt {} } \right. \cr & x = \sqrt { - 1} = i \cr} \)
Achtung, man muss zwischen der Definition \(\sqrt { - 1} = i\) unterscheiden und zwischen den beiden Lösungen der 2. Wurzel der Zahl z=-1 im Bereich der komplexen Zahlen:
\(w = \sqrt { - 1} \)
Wie jede 2-te Wurzel hat auch die Quadratwurzel aus -1 zwei Lösungen:
- Nämlich eine, als Hauptwert bezeichnete, 1. Lösung w0=+i mit der Probe i²=-1 und
- eine um 180° verschobene 2. Lösung w1=-i mit der Probe (-i)²=-1.
Eine detailliertere Erklärung findet sich, wenn man "Wurzeln komplexer Zahlen" in den Suchslot eingibt.
- i ist eine komplexe Zahl, deren Realteil null ist, und deren Imaginärteil eben i ist. i selbst hat keinen Realteil und wird in der gaußschen Zahlenebene als Vektor mit der Länge 1 in Richtung der positiven imaginären Achse dargestellt.
- -i hat keinen Realteil und wird in der gaußschen Zahlenebene als Vektor mit der Länge 1 in Richtung der negativen imaginären Achse dargestellt.
- +i und -i schließen in der gaußschen Zahlenebene einen 180° Winkel ein.
Beachte:
\(\begin{array}{l} \sqrt { - 1} = i \leftarrow {\rm{true}}\\ \sqrt { - 1} = - i \leftarrow {\rm{false}}\\ i = \pm \sqrt 1 \leftarrow {\rm{false}}\\ \\ - \sqrt { - 1} = - i \leftarrow {\rm{true}}\\ - \sqrt { - i} = i \leftarrow {\rm{false}}\\ \\ {i^2} = - 1 \leftarrow {\rm{true}}\\ {\left( { - i} \right)^2} = - 1 \leftarrow {\rm{true}} \end{array}\)
Anmerkung für Elektrotechniker: Da in der Wechsel- und Drehstromrechnung durchgängig mit komplexen Zahlen gerechnet wird und i für die zeitabhängige Stromstärke i(t) steht, verwenden Elektrotechniker statt dem Buchstaben i den Buchstaben j, somit \(\sqrt { - 1} = j\)
Gleichheit komplexer Zahlen
Zwei komplexe Zahlen sind gleich, wenn sie sowohl in ihrem Real-als auch in ihrem Imaginärteil übereinstimmen.
Höhere Potenzen der imaginären Einheit i
Die höheren Potenzen von i kann man wie folgt vereinfachen:
\({i = \sqrt { - 1} }\) | |
\({{i^2} = - 1}\) | |
\({{i^3} = {i^2} \cdot i = - 1 \cdot i = - i}\) | |
\({{i^4} = {i^2} \cdot {i^2} = \left( { - 1} \right) \cdot \left( { - 1} \right) = 1}\) | |
\({{i^5} = \left( {{i^4}} \right) \cdot i = 1 \cdot i = i}\) | |
\({{i^6} = \left( {{i^4}} \right) \cdot {i^2} = 1 \cdot \left( { - 1} \right) = - 1}\) | |
\({{i^7} = \left( {{i^4}} \right) \cdot {i^3} = 1 \cdot \left( { - i} \right) = - i}\) | |
\({{i^8} = {{\left( {{i^4}} \right)}^2} = {{\left( 1 \right)}^2} = 1}\) | |
\({{i^9} = {{\left( {{i^4}} \right)}^2} \cdot i = {{\left( 1 \right)}^2} \cdot i = i}\) | |
\({{i^{10}} = {{\left( {{i^4}} \right)}^2} \cdot {i^2} = 1 \cdot \left( { - 1} \right) = - 1}\) | |
\({{i^{11}} = {{\left( {{i^4}} \right)}^2} \cdot {i^3} = {{\left( 1 \right)}^2} \cdot \left( { - i} \right) = - i}\) | |
\({{i^{12}} = {{\left( {{i^4}} \right)}^3} = 1}\) | |
\({{i^{13}} = {{\left( {{i^4}} \right)}^3} \cdot i = 1 \cdot i = i}\) |
Wir erkennen dabei ab i2 folgende Abfolge: -1, -i, 1, i die sich danach immer wieder wiederholt. Es bietet sich eine Zerlegung in Vielfache von i4 wegen i4=1 an.
Beispiele:
\(\eqalign{ & - {i^3} = - \left( {{i^3}} \right) = - \left( { - i} \right) = i \cr & \cr & {( - i)^5} = {\left( { - i} \right)^2} \cdot {\left( { - i} \right)^2} \cdot \left( { - i} \right) = \cr & = {i^2} \cdot {i^2} \cdot \left( { - i} \right) = \left( { - 1} \right) \cdot \left( { - 1} \right) \cdot \left( { - i} \right) = \cr & = 1 \cdot \left( { - i} \right) = - i \cr} \)
Gaußsche Zahlenebene
Grafisch werden komplexe Zahlen in der gaußschen Zahlenebene dargestellt. Vergleichbar zu einem Vektor in der Ebene, wird der Realteil in Richtung der x-Achse und der Imaginärteil in Richtung der y-Achse (=imaginäre Achse) aufgetragen. Für komplexe Zahlen verwendet man verschiedene Darstellungsformen, nachfolgend die kartesische Darstellung auch Normalform genannt.
\(z = a + ib\)
Für die Darstellung in Polarkoordinaten \(z = \left( {r\left| \varphi \right.} \right)\) gilt:
\(r = \sqrt {{a^2} + {b^2}} \)
\(\varphi = \arctan \dfrac{b}{a}\)
Achtung: Zur Bestimmung von \(\varphi\) auf den Quadranten in dem z liegt achten!
Graphische Darstellung einer komplexen Zahl in der gaußschen Zahlenebene
Auf der x-Achse wird der Realteil also a bzw. r·cos \(\varphi\) aufgetragen, auf der y-Achse wird der Imaginärteil also b bzw. r·sin \(\varphi\) aufgetragen. Die komplexe Zahlenebene entspricht dabei der gaußsche Zahlenebene, wobei die x-Achse als reelle Achse und die y-Achse als imaginäre Achse bezeichnet werden.
\(\eqalign{ & z = a + ib \cr & z = r(\cos \varphi + i\sin \varphi ) \cr}\)
Illustration einer komplexen Zahl in der gaußschen Zahlenebene
Betrag einer komplexen Zahl
Stellt man sich eine komplexe Zahl als Vektor in der gaußschen Zahlenebene vor, wobei der Schaft vom Vektor im Ursprung und die Spitze vom Vektor an der Stelle \(\left( {a\left| b \right.} \right)\) liegt, so entspricht der Betrag der komplexen Zahl der Länge vom Vektor.
\(\eqalign{ & \left| z \right| = \left| {a + ib} \right| = \sqrt {{a^2} + {b^2}} \cr & \left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \dfrac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}} \cr & \left| {{z_1} \cdot {z_2}} \right| = \left| {{z_1}} \right| \cdot \left| {{z_2}} \right| \cr & \left| {{z^n}} \right| = {\left| z \right|^n} \cr}\)
Konjugiert komplexe Zahl
Die zu einer komplexen Zahl konjugiert komplexe Zahl erhält man, indem man das Vorzeichen des Imaginärteils wechselt, während das Vorzeichen der Realteils unverändert bleibt.
\(\eqalign{ & z = a + ib \cr & \overline z = a - ib \cr}\)
Geometrisch entspricht dies einer Spiegelung der komplexen Zahl um die x-Achse.
Multipliziert man eine komplexe Zahl mit ihrer konjugiert komplexen Zahl, dann ist das Produkt immer eine reelle Zahl.
Illustration einer komplexen Zahl und der zugehörigen konjugiert komplexen Zahl
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgaben
Aufgabe 30
Betrag komplexer Zahlen
Zeige:
\(\left| {{z_1} \cdot {z_2}} \right| = \left| {{z_1}} \right| \cdot \left| {{z_2}} \right|\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 31
Betrag komplexer Zahlen
Berechne:
\(w = {\text{|7 - 4i|}}\)
Aufgabe 4444
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zahlen können auch komplex sein - Aufgabe B_510
Viele Vorgange in der Elektrotechnik können modellhaft mithilfe von komplexen Zahlen beschrieben werden. Dabei wird die imaginäre Einheit mit j bezeichnet.
Teil a
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie in der nachstehenden Abbildung die komplexe Zahl
\({z_1} = 2 \cdot {e^{ - j\dfrac{\pi }{2}}}\)
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie in der nachstehenden Abbildung die beiden komplexen Zahlen z2 und z3 ein, die den Realteil –3 und den Betrag 5 haben.
[0 / 1 P.]