Elektrische Spannung U
Die elektrische Spannung ist ein Energiezustand, der zwischen ungleichen Potentialen von Ladungen besteht.
Hier findest du folgende Inhalte
Formeln
Elektrisches Potential und Spannung
Bei Anwesenheit von elektrischer Ladung bildet sich ein räumliches elektromagnetisches Feld aus. Ein Feld ist eine Energieform, die den Raum erfüllt. Felder können sich mit endlicher Geschwindigkeit ausbreiten, wobei ihre Dynamik durch Feldgleichungen beschrieben wird. Das elektromagnetische Feld ist ein Vektorfeld. Es gibt in jedem Punkt die coulombsche Kraft nach Größe in Volt pro Meter und Richtung an, die auf eine positive oder negative Ladung ausgeübt wird.
Elektrisches Potential Phi
Das elektrische Potential \(\varphi \) repräsentiert die Fähigkeit eines elektromagnetischen Feldes Arbeit an einer elektrischen Ladung zu verrichten. Wird eine elektrische Ladung auf Grund der coulombschen Kraft durch ein elektromagnetisches Feld bewegt, so wird Arbeit an der Ladung verrichtet wodurch sich ihre potentielle Energie verändert.
\(\varphi = \dfrac{{{W_{pot}}}}{q}\)
\(\varphi \) | elektrisches Potential mit der Einheit Volt |
Wpot | potentielle Energie mit der Einheit Joule |
q | Ladung mit der Einheit Coulomb |
Volt V als Einheit vom elektrischen Potential
Volt V ist die Einheit vom elektrischen Potential \(\varphi \) .
\(1 \cdot V = 1 \cdot \dfrac{J}{C}\)
Elektrisches Potential von einem Bezugspunkt
Irgendwo im Raum wird ein Bezugspunkt mit frei wählbarem Potential \({\varphi _0} = 0V\) festgelegt. Von diesem Bezugspunkt aus kann jedem Punkt im Raum ein bestimmtes Potential \({\varphi _P}\) zugewiesen werden. Das elektrische Potential stellt ein Skalarfeld dar, dessen Einheit das Volt ist. Voraussetzung für das elektrische Potential ist die Wegunabhängigkeit der elektrischen Spannung.
Spannung als Potentialdifferenz
Die Spannung zwischen zwei Punkten P und Q ist nichts anderes, als die Differenz der Potentialwerte der beiden Punkte.
\({U_{PQ}} = {\varphi _P} - {\varphi _Q}\)
Spannung im Bereich konstanten Potentials
Liegt zwischen 2 Punkten P und Q keine elektrische Spannung an, dann handelt es sich um Bereiche konstanten Potentials (Äquipotentialfläche)
\({U_{PQ}} = {\varphi _P} - {\varphi _Q} = 0\)
Spannung gegenüber einem Nullpunkt
In der Elektrotechnik sind die Erde, der Neutralleiter und der Sternpunkt eines entsprechenden Trafos übliche Null- bzw. Bezugspunkte zur Spannungsmessung. Diese Wahl ist auch für die Dimensionierung der Isolation sehr wichtig.
Die Spannung gibt dann den Potentialunterschied zwischen dem Bezugspunkt P und dem Nullpunkt an:
\(\eqalign{ & {U_{0P}} = {\varphi _P} - {\varphi _0} \cr & {\text{sinnvolle Wahl: }}{\varphi _0} = 0 \cr} \)
\({U_{0P}} = {\varphi _P}\)
Illustration von Potentialdifferenzen in einem elektrischen Gleichstromkreis
Volt V als Einheit der elektrischen Spannung
Volt V ist die Einheit der elektrischen Spannung U. 1 Volt ist jene Spannung zwischen zwei Klemmen eines Stromkreises, bei der eine Leistung von 1 Watt bei einer Stromstärke von 1 A umgesetzt wird.
Elektrische Spannung U
Die elektrische Spannung ist der Quotient aus der zur Verschiebung einer Ladung Q erforderlichen elektrischen Arbeit W entlang des Weges von P nach Q und der verschobenen Ladung Q
\({U_{PQ}} = \dfrac{{{W_{PQ}}}}{Q}\)
Elektrische Spannung als Linienintegral der elektrischen Feldstärke
Die Spannung U zwischen den Punkten P und Q ist als das Linienintegral der elektrischen Feldestärke \(\overrightarrow E\) entlang einem beliebigen Weg zwischen P und Q definiert.
\(U = \int\limits_P^Q {\overrightarrow E } \,\,d\overrightarrow s \)
→ Auf die Eigenschaften von Spannung im Gleichstromkreis U bzw. Wechselstromkreis u(t) gehen wir in den diesbezüglichen Kapiteln ausführlich ein
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Elektrische Spannung
Elektrische Spannung entsteht, wenn positive und negative Ladungen von einander getrennt vorliegen. Die elektrische Spannung U entspricht der Arbeit W, die zur Verschiebung (Trennung) der Ladung Q erforderlich ist. Die elektrische Spannung ist also ein Energiezustand, der zwischen ungleichen Potentialen von Ladungen besteht. Verbindet man die von einander getrennten positiven und negativen Ladungen durch einen elektrischen Leiter, so ist die Spannung die Ursache für einen (Ausgleichs)strom.
zeitunabhängige Darstellung (Großbuchstaben)
\(U = \dfrac{W}{Q}\)
zeitabhängige Darstellung (Kleinbuchstaben)
\(u\left( t \right) = \dfrac{{dw}}{{dq}}\)
\(U\) | Spannung in V |
\( \varphi\) | elektrisches Potential in V - gegen Bezugspunkt (Erde) |
\(W\) | Arbeit |
\(Q\) | Ladung |
Maßzahl, Größe und Einheit
Physikalische Größen sind das Produkt aus einer Maßzahl mit einer Einheit.
Größe = Maßzahl x Einheit
Maßzahl
Die Maßzahl gibt den Betrag (Menge, Stückzahl,...) als eine konkrete Zahl aus der Menge der reellen Zahlen an.
Basisgröße
Die Größe(nart) legt fest, um welche physikalische Größe es sich handelt. Es gibt sieben voneinander unabhängige Basisgrößen.
Abgeleitete Größe
Aus den sieben von einander unabhängigen Basisgrößen setzen sich alle anderen physikalischen Größen zusammen.
Basiseinheit
Jeder der sieben Basisgrößen ist eine Basiseinheit und ein Einheitenzeichen zugeordnet. Manche Basiseinheiten sind von anderen Basiseinheiten abhängig. So geht etwa in die Definition von der Basiseinheit "Meter" die Basiseinheit "Sekunde" ein. Die Einheit umfasst auch die Zehnerpotenz der Maßzahl. Zum Beispiel für 103 steht Kilo, für 106 steht Mega oder für 10-9 steht nano vor der eigentlichen Einheit.
Einheit
Einheiten dienen dazu Größen zu messen. Für abgeleitete Größen verwendet man Einheiten, die sich aus Basiseinheiten zusammen setzen.
Beispiel:
Zwei Holzstücke mit 7cm bzw. 7m Länge. Diese beiden physikalischen Größen setzen sich zusammen aus
- einer Maßzahl, die den Betrag angibt (in beiden Fällen "7")
- einer Größe(nart), die festlegt um welche Qualität es sich handelt (in beiden Fällen "Länge")
- einer Einheit, die festlegt wie der Betrag abzuzählen ist (im Beispiel "cm" bzw. "m")
Beispiel:
Vergleiche 7m, 7cm
Wir bringen auf die gleiche Einheit "m"
7cm = 0,07m
Nun können wir die Werte an Hand ihrer Zahlenwerte wie folgt vergleichen
7m > 0,07m=7cm
Ein Holzstück von 7m Länge ist länger als ein Holzstück mit einer Länge von 7cm.
7 SI Basisgrößen und ihre Basiseinheiten
Die 7 Basisgrößen sind von einander unabhängige Grundgrößen der Physik. SI steht für „Système international d’unités“, das ist das am weitesten verbreitete internationale Einheitensystem.
Basisgröße, Formelzeichen | Basiseinheit | Einheitszeichen |
Länge l | Meter | m |
Masse m | Kilogramm | kg |
Zeit t | Sekunde | s |
elektrische Stromstärke I | Ampere | A |
Temperatur T | Kelvin | K |
Stoffmenge n | Mol | mol |
Lichtstärke Iv | Candela | cd |
SI abgeleitete Größen und ihre Einheiten
Während die 7 Basisgrößen von einander unabhängig sind, haben daraus zusammengesetzte, sogenannte abgeleitete Größen entsprechende abgeleitete Einheiten. Wichtige abgeleitete Größen und ihre Einheiten sind
Abgeleitete physikalische Größe, Formelzeichen | Einheit | Einheitszeichen |
Fläche A | Quadratmeter | m² |
Volumen V | Kubikmeter | m³ |
Geschwindigkeit v | Kilometer pro Stunde | m/s |
Beschleunigung a | Meter pro Sekundenquadrat | m/s² |
mechanische Kraft F | Newton | N |
Frequenz f | Herz | Hz |
Arbeit W, Energie E, Wärmemenge Q | Joule | J |
mechanische Leistung P | Watt | W |
Druck p | Pascal | Pa |
Lichtstrom Φ | Lumen | lm |
Beleuchtungsstärke E | Lux | lx |
SI abgeleitete Größen und ihre Einheiten aus der Elektrotechnik
Während die 7 Basisgrößen von einander unabhängig sind, haben daraus zusammengesetzte, sogenannte abgeleitete Größen entsprechende abgeleitete Einheiten. Wichtige abgeleitete Größen und ihre Einheiten aus dem Gebiet der Elektrotechnik sind
Abgeleitete elektrotechnische Größe, Formelzeichen | Einheit | Einheitszeichen |
magnetische Feldstärke \({\overrightarrow H }\) | Ampere pro m | A/m |
elektrische Feldstärke \({\overrightarrow E }\) | Volt pro m | V/m |
Spannung U | Volt | V |
Arbeit W, Energie E | Joule | J |
elektrische Ladung Q | Coulomb | C |
elektrische Leistung P | Watt | W |
ohmscher Widerstand R | Ohm | \(\Omega\) |
elektrische Kapazität C | Farad | F |
magnetische Induktivität L | Henry | H |
magnetischer Fluss \(\Phi\) | Weber | Wb |
magnetische Flussdichte \({\overrightarrow B }\) | Tesla | T |
Physikalische Größen - Auswahl und Definition gemäß Formelsammlung AHS
Größe | Formel | Formel | Formel |
Dichte ρ | \(\rho = \dfrac{m}{v}\) | ||
Leistung P | \(P = \dfrac{{\Delta E}}{{\Delta t}}\) | \(P = \dfrac{{\Delta W}}{{\Delta t}}\) | \(P = \dfrac{{dW\left( t \right)}}{{dt}}\) |
Kraft F | \(F = m \cdot a\) | \(F = \dfrac{{dW}}{{ds}}\) | |
Arbeit | \(W = F \cdot s\) | \(W = \int {F\left( s \right)\,\,\operatorname{ds} }\) | |
kinetische Energie Ekin | \({E_{kin}} = \dfrac{{m \cdot {v^2}}}{2}\) | ||
potentielle Energie Epot | \({E_{pot}} = m \cdot g \cdot h\) | ||
gleichförmige geradlinige Bewegung v(t) | \(v = \dfrac{s}{t}\) | \(v = \dfrac{{ds}}{{dt}}\) | \(v\left( t \right) = s'\left( t \right) = \dfrac{{ds}}{{dt}}\) |
gleichmäßig beschleunigte geradlinige Bewegung a(t) | \(v = a \cdot t + {v_0}\) | \(a = \dfrac{{dv}}{{dt}}\) | \(a\left( t \right) = v'\left( t \right) = \dfrac{{dv}}{{dt}} = s''\left( t \right) = \dfrac{{{d^2}s}}{{d{t^2}}}\) |
Bewegungsvorgänge - Auswahl und Definition gemäß Formelsammlung BHS
Größe | Formel |
Zeit t | \(t\) |
Weg-Zeit-Funktion s(t) | \(s\left( t \right) = \int {v\left( t \right)} \,\,dt\) |
Geschwindigkeit-Zeit-Funktion v(t) | \(v(t) = s'\left( t \right) = \mathop s\limits^ \bullet = \dfrac{{ds}}{{dt}} = \int {a\left( t \right)} \,\,dt\) |
Beschleunigung-Zeit-Funktion a(t) | \(a\left( t \right) = s''\left( t \right) = \mathop s\limits^{ \bullet \bullet } = \dfrac{{{d^2}s}}{{d{t^2}}} = v'\left( t \right) = \mathop v\limits^ \bullet = \dfrac{{dv}}{{dt}}\) |
Anmerkung zur auf Universitäten üblichen Kurzschreibweise von "Ableitungen nach der Zeit": Die Notation mit einem "Punkt" über dem Formelzeichen bedeutet, dass es sich um die 1 Ableitung nach der Zeit handelt. Zwei "Punkte" bedeuten, dass es sich um die 2. Ableitung nach der Zeit handelt.
Größen und ihre Einheiten - Auswahl gemäß Formelsammlung AHS
Größe | Einheit | Symbol | Beziehung zu SI-Einheiten |
Temperatur T | Grad Celsius Grad Kelvin |
°C K |
\(\Delta t = \Delta T\) |
Frequenz f | Hertz | Hz | \(1 \cdot Hz = 1 \cdot {s^{ - 1}}\) |
Arbeit W, Energie E, Wärmemenge Q | Joule | J | \(1 \cdot J = 1 \cdot kg \cdot {m^{2}}\cdot s^{ - 2}\) |
Kraft F | Newton | N | \(1 \cdot N = 1 \cdot kg \cdot m \cdot {s^{ - 2}}\) |
Drehmoment M | Newtonmeter | \(N \cdot m\) | \(1 \cdot N \cdot m = 1 \cdot kg \cdot {m^2} \cdot {s^{ - 2}}\) |
Elektrischer Widerstand R | Ohm | \(\Omega\) | \(1 \cdot \Omega = 1 \cdot V \cdot {A^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {A^{ - 2}} \cdot {s^{ - 3}}\) |
Druck p | Pascal | Pa | \(1 \cdot Pa = 1 \cdot N \cdot {m^{ - 2}} = 1 \cdot kg \cdot {m^{ - 1}} \cdot {s^{ - 2}}\) |
Elektrische Stromstärke I | Ampere | A | \(1 \cdot A = 1 \cdot C \cdot {s^{ - 1}}\) |
Elektrische Spannung U | Volt | V | \(1 \cdot V = 1 \cdot J \cdot {C^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {A^{ - 1}} \cdot {s^{ - 3}}\) |
Leistung P | Watt | W | \(1 \cdot W = 1 \cdot J \cdot {s^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {s^{ - 3}}\) |