Elektrischer Widerstand R
Hier findest du folgende Inhalte
Formeln
Spezifischer elektrischer Widerstand bzw. ohmscher Widerstand
Der spezifische elektrische Widerstand \(\rho\) gibt für ein bestimmtes Material an, wie groß dessen Widerstand R bei 1m Leitungslänge l und einem Leiterquerschnitt A von 1 mm² ist. Mit Hilfe des materialabhängigen spezifischen Widerstands kann man den ohmschen elektrischen Widerstand bei bekannter Leitergeometrie (Länge, Querschnitt) berechnen.
Innerhalb begrenzter Temperaturbereiche ändert sich der spezifische elektrische Widerstand linear mit der Temperatur, wobei man zwischen Kalt- und Heißleitern unterscheidet. Reine Metalle sind Kaltleiter, d.h. sie haben einen positiven Temperaturkoeffizienten, der zwischen 0,09% und 0,6% beträgt. D.h. ihr spezifischer und somit ihr ohmscher Widerstand steigen bei zunehmender Temperatur an.
\(R = \dfrac{{\rho \cdot l}}{A} = \dfrac{l}{{\kappa \cdot A}}\)
R | ohmscher Widerstand in "Ohm" \(\Omega\) |
G | elektrischer Leitwert mit der Einheit Siemens S |
\(\rho\) | spezifischer elektrischer Widerstand "Rho" in \(\dfrac{{\Omega \cdot m{m^2}}}{m}\) |
l | Länge der Leitung in m |
A | Querschnitt der Leitung in mm2 |
\(\kappa\) | spezifischer Leitwert "Kappa" oder elektrische Leitfähigkeit \(\dfrac{m}{{\Omega \cdot mm^2}}\) |
Elektrischer Leitwert
Der elektrische Leitwert entspricht dem Kehrwert vom elektrischen Widerstand. Ein Leiter welcher elektrischen Strom gut leitet, hat einen hohen Leitwert bzw. einen niederen Widerstand.
\(G = \dfrac{1}{R}\)
Elektrische Leitfähigkeit
Die elektrische Leitfähigkeit ist ein materialspezifisches Maß für die Eignung zum Leiten von elektrischem Strom. Man unterscheidet nach Leitern (Metalle), nach Nichtleitern (Isolatoren) und nach Halbleitern (äußere Einflüsse entscheiden ob das Material leitet oder nicht leitet)
\(\kappa = \dfrac{1}{\rho }\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Ohmsches Gesetz
Das ohmsche Gesetz beschreibt den Zusammenhang zwischen der an den Klemmen eines Stromkreises anliegenden Spannung, die einen Strom durch den Leiter treibt, dessen Höhe jedoch von Materialeigenschaften bzw. von der Geometrie des Leiterdrahts abhängt.
Der ohmsche Widerstand sinkt proportional mit zunehmenden Leiterquerschnitt (indirekte Proportionalität), steigt proportional mit zunehmender Leiterlänge (direkte Proportionalität) und ist abhängig von einer Materialeigenschaft, dem spezifischen Widerstand bzw. dem spezifischen Leitwert. Der ohmsche Widerstand ist bei Elektroheizungen erwünscht, nicht aber bei der Energieübertragung, wo der Spannungsabfall entlang der Leitung zu einer Verlustleistung führt.
\(R=\dfrac{U}{I} \)
Treibt die Spannung U=1V einen Strom von der Stärke I=1A so beträgt der ohmsche Widerstand R=1W
I | Strom in A(mpere) |
U | Spannung in V(olt) |
R | Widerstand („Resistanz“) in Ω (Ohm) auch "Wirkwiderstand" |
- Die Beziehung \(U = R \cdot I\) gilt nur für rein ohmsche Widerstände, nicht nur bei Gleichstrom sondern auch bei Wechselstrom, weil in diesem Fall die Phasenverschiebung zwischen Strom und Spannung genau 0° beträgt. (D.h. der Nulldurchgang von Strom und Spannung erfolgen zeitgleich). Ohmsche Widerstände wandeln elektrische Energie ausnahmslos in thermische Energie um - sie werden heiß. Spulen und Kondensatoren hingegen sind keine rein ohmschen Widerstände.
- Die Beziehung \(U = R \cdot I\) gilt auch nur für lineare ohmsche Widerstände. Dioden sind ein Beispiel für elektronische Bauelemente mit einem nichtlinearen Zusammenhang zwischen Strom und Spannung. Dieser Zusammenhang muss daher einer individuellen Strom-Spannungskennlinie entnommen werden. Für jeden einzelnen Punkt dieser Kennlinie gilt das ohmsche Gesetz wiederum.
Maßzahl, Größe und Einheit
Physikalische Größen sind das Produkt aus einer Maßzahl mit einer Einheit.
Größe = Maßzahl x Einheit
Maßzahl
Die Maßzahl gibt den Betrag (Menge, Stückzahl,...) als eine konkrete Zahl aus der Menge der reellen Zahlen an.
Basisgröße
Die Größe(nart) legt fest, um welche physikalische Größe es sich handelt. Es gibt sieben voneinander unabhängige Basisgrößen.
Abgeleitete Größe
Aus den sieben von einander unabhängigen Basisgrößen setzen sich alle anderen physikalischen Größen zusammen.
Basiseinheit
Jeder der sieben Basisgrößen ist eine Basiseinheit und ein Einheitenzeichen zugeordnet. Manche Basiseinheiten sind von anderen Basiseinheiten abhängig. So geht etwa in die Definition von der Basiseinheit "Meter" die Basiseinheit "Sekunde" ein. Die Einheit umfasst auch die Zehnerpotenz der Maßzahl. Zum Beispiel für 103 steht Kilo, für 106 steht Mega oder für 10-9 steht nano vor der eigentlichen Einheit.
Einheit
Einheiten dienen dazu Größen zu messen. Für abgeleitete Größen verwendet man Einheiten, die sich aus Basiseinheiten zusammen setzen.
Beispiel:
Zwei Holzstücke mit 7cm bzw. 7m Länge. Diese beiden physikalischen Größen setzen sich zusammen aus
- einer Maßzahl, die den Betrag angibt (in beiden Fällen "7")
- einer Größe(nart), die festlegt um welche Qualität es sich handelt (in beiden Fällen "Länge")
- einer Einheit, die festlegt wie der Betrag abzuzählen ist (im Beispiel "cm" bzw. "m")
Beispiel:
Vergleiche 7m, 7cm
Wir bringen auf die gleiche Einheit "m"
7cm = 0,07m
Nun können wir die Werte an Hand ihrer Zahlenwerte wie folgt vergleichen
7m > 0,07m=7cm
Ein Holzstück von 7m Länge ist länger als ein Holzstück mit einer Länge von 7cm.
7 SI Basisgrößen und ihre Basiseinheiten
Die 7 Basisgrößen sind von einander unabhängige Grundgrößen der Physik. SI steht für „Système international d’unités“, das ist das am weitesten verbreitete internationale Einheitensystem.
Basisgröße, Formelzeichen | Basiseinheit | Einheitszeichen |
Länge l | Meter | m |
Masse m | Kilogramm | kg |
Zeit t | Sekunde | s |
elektrische Stromstärke I | Ampere | A |
Temperatur T | Kelvin | K |
Stoffmenge n | Mol | mol |
Lichtstärke Iv | Candela | cd |
SI abgeleitete Größen und ihre Einheiten
Während die 7 Basisgrößen von einander unabhängig sind, haben daraus zusammengesetzte, sogenannte abgeleitete Größen entsprechende abgeleitete Einheiten. Wichtige abgeleitete Größen und ihre Einheiten sind
Abgeleitete physikalische Größe, Formelzeichen | Einheit | Einheitszeichen |
Fläche A | Quadratmeter | m² |
Volumen V | Kubikmeter | m³ |
Geschwindigkeit v | Kilometer pro Stunde | m/s |
Beschleunigung a | Meter pro Sekundenquadrat | m/s² |
mechanische Kraft F | Newton | N |
Frequenz f | Herz | Hz |
Arbeit W, Energie E, Wärmemenge Q | Joule | J |
mechanische Leistung P | Watt | W |
Druck p | Pascal | Pa |
Lichtstrom Φ | Lumen | lm |
Beleuchtungsstärke E | Lux | lx |
SI abgeleitete Größen und ihre Einheiten aus der Elektrotechnik
Während die 7 Basisgrößen von einander unabhängig sind, haben daraus zusammengesetzte, sogenannte abgeleitete Größen entsprechende abgeleitete Einheiten. Wichtige abgeleitete Größen und ihre Einheiten aus dem Gebiet der Elektrotechnik sind
Abgeleitete elektrotechnische Größe, Formelzeichen | Einheit | Einheitszeichen |
magnetische Feldstärke \({\overrightarrow H }\) | Ampere pro m | A/m |
elektrische Feldstärke \({\overrightarrow E }\) | Volt pro m | V/m |
Spannung U | Volt | V |
Arbeit W, Energie E | Joule | J |
elektrische Ladung Q | Coulomb | C |
elektrische Leistung P | Watt | W |
ohmscher Widerstand R | Ohm | \(\Omega\) |
elektrische Kapazität C | Farad | F |
magnetische Induktivität L | Henry | H |
magnetischer Fluss \(\Phi\) | Weber | Wb |
magnetische Flussdichte \({\overrightarrow B }\) | Tesla | T |
Physikalische Größen - Auswahl und Definition gemäß Formelsammlung AHS
Größe | Formel | Formel | Formel |
Dichte ρ | \(\rho = \dfrac{m}{v}\) | ||
Leistung P | \(P = \dfrac{{\Delta E}}{{\Delta t}}\) | \(P = \dfrac{{\Delta W}}{{\Delta t}}\) | \(P = \dfrac{{dW\left( t \right)}}{{dt}}\) |
Kraft F | \(F = m \cdot a\) | \(F = \dfrac{{dW}}{{ds}}\) | |
Arbeit | \(W = F \cdot s\) | \(W = \int {F\left( s \right)\,\,\operatorname{ds} }\) | |
kinetische Energie Ekin | \({E_{kin}} = \dfrac{{m \cdot {v^2}}}{2}\) | ||
potentielle Energie Epot | \({E_{pot}} = m \cdot g \cdot h\) | ||
gleichförmige geradlinige Bewegung v(t) | \(v = \dfrac{s}{t}\) | \(v = \dfrac{{ds}}{{dt}}\) | \(v\left( t \right) = s'\left( t \right) = \dfrac{{ds}}{{dt}}\) |
gleichmäßig beschleunigte geradlinige Bewegung a(t) | \(v = a \cdot t + {v_0}\) | \(a = \dfrac{{dv}}{{dt}}\) | \(a\left( t \right) = v'\left( t \right) = \dfrac{{dv}}{{dt}} = s''\left( t \right) = \dfrac{{{d^2}s}}{{d{t^2}}}\) |
Bewegungsvorgänge - Auswahl und Definition gemäß Formelsammlung BHS
Größe | Formel |
Zeit t | \(t\) |
Weg-Zeit-Funktion s(t) | \(s\left( t \right) = \int {v\left( t \right)} \,\,dt\) |
Geschwindigkeit-Zeit-Funktion v(t) | \(v(t) = s'\left( t \right) = \mathop s\limits^ \bullet = \dfrac{{ds}}{{dt}} = \int {a\left( t \right)} \,\,dt\) |
Beschleunigung-Zeit-Funktion a(t) | \(a\left( t \right) = s''\left( t \right) = \mathop s\limits^{ \bullet \bullet } = \dfrac{{{d^2}s}}{{d{t^2}}} = v'\left( t \right) = \mathop v\limits^ \bullet = \dfrac{{dv}}{{dt}}\) |
Anmerkung zur auf Universitäten üblichen Kurzschreibweise von "Ableitungen nach der Zeit": Die Notation mit einem "Punkt" über dem Formelzeichen bedeutet, dass es sich um die 1 Ableitung nach der Zeit handelt. Zwei "Punkte" bedeuten, dass es sich um die 2. Ableitung nach der Zeit handelt.
Größen und ihre Einheiten - Auswahl gemäß Formelsammlung AHS
Größe | Einheit | Symbol | Beziehung zu SI-Einheiten |
Temperatur T | Grad Celsius Grad Kelvin |
°C K |
\(\Delta t = \Delta T\) |
Frequenz f | Hertz | Hz | \(1 \cdot Hz = 1 \cdot {s^{ - 1}}\) |
Arbeit W, Energie E, Wärmemenge Q | Joule | J | \(1 \cdot J = 1 \cdot kg \cdot {m^{2}}\cdot s^{ - 2}\) |
Kraft F | Newton | N | \(1 \cdot N = 1 \cdot kg \cdot m \cdot {s^{ - 2}}\) |
Drehmoment M | Newtonmeter | \(N \cdot m\) | \(1 \cdot N \cdot m = 1 \cdot kg \cdot {m^2} \cdot {s^{ - 2}}\) |
Elektrischer Widerstand R | Ohm | \(\Omega\) | \(1 \cdot \Omega = 1 \cdot V \cdot {A^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {A^{ - 2}} \cdot {s^{ - 3}}\) |
Druck p | Pascal | Pa | \(1 \cdot Pa = 1 \cdot N \cdot {m^{ - 2}} = 1 \cdot kg \cdot {m^{ - 1}} \cdot {s^{ - 2}}\) |
Elektrische Stromstärke I | Ampere | A | \(1 \cdot A = 1 \cdot C \cdot {s^{ - 1}}\) |
Elektrische Spannung U | Volt | V | \(1 \cdot V = 1 \cdot J \cdot {C^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {A^{ - 1}} \cdot {s^{ - 3}}\) |
Leistung P | Watt | W | \(1 \cdot W = 1 \cdot J \cdot {s^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {s^{ - 3}}\) |