Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Hochpunkt einer Funktion

Hochpunkt einer Funktion

Am Hochpunkt einer Funktion ist die 1. Ableitung der Funktion 0 und die 2. Ableitung kleiner als 0

Hier findest du folgende Inhalte

1
Formeln
10
Aufgaben
    Formeln
    Wissenspfad
    Aufgaben

    Grafisches Differenzieren

    Beim grafischen Differenzieren leitet man Aussagen über den Verlauf einer Funktion aus dem Verlauf ihrer 1. und 2. Ableitung ab, bzw. umgekehrt

    f hat Extremstelle (HP oder TP) f' hat NST  
    f hat Wendepunkt f' hat Extremstelle (HP oder TP) f'' hat NST
    f hat Sattelpunkt f' hat HP oder TP auf x-Achse f'' hat NST
    f steigt streng monoton f' liegt oberhalb der x-Achse bzw. f' > 0  
    f sinkt streng monoton f' liegt unterhalb der x-Achse bzw. f' < 0  
    f ist linksgekrümmt, positiv gekrümmt bzw. konvex f' ist steigend f'' > 0
    f ist rechtsgekrümmt, negativ gekrümmt bzw. konkav f' ist fallend f'' < 0

    Merkhilfe: NEW-Regel

    N = Nullstelle; E=Extremstelle (HP, TP); W=Wendestelle

    F(x) f(x) N E W    
    f(x) f'(x)   N E W  
    f'(x) f''(x)     N E W

    Zusammenhänge zwischen der Funktion, ihrer ersten und ihrer zweiten Ableitung beim grafisches Differenzieren

    Funktion f(x) Ableitung f‘(x) Ableitung f"(x)

    f hat eineExtremstelle
    d.h. f hat eine waagrechte Tangente d.h.k=0

    f‘ hat eine Nullstelle keine Aussage möglich

    f hat einen Wendepunkt und die Krümmung ändert sich von positiv \(\cup\) auf negativ \(\cap\).
    Die Tangente im Wendepunkt hat k<0.

    f‘ hat einen Extremwert: Hochpunkt f" hat eine Nullstelle​

    f hat einen Wendepunktund die Krümmung ändert sich von negativ \(\cap\) auf positiv \(\cup\).
    Die Tangente im Wendepunkt hat k>0.

    f‘ hat einen Extremwert: Tiefpunkt f" hat eine Nullstelle

    f hat einen Sattelpunkt und die Krümmung ändert sich von positiv \(\cup\) auf negativ \(\cap\).
    Die Tangente im Sattelpunkt hat k=0

    f‘ hat einen Hochpunkt der auf der x-Achse liegt d.h. der auch Nullstelle ist f‘‘ hat eine Nullstelle

    f hat einen Sattelpunkt und die Krümmung ändert sich von negativ \(\cap\) auf positiv \(\cup\).
    Die Tangente im Wendepunkt hat k=0

    f‘ hat einen Tiefpunkt der auf der x-Achse liegt d.h. der auch Nullstelle ist

    f‘‘ hat eine Nullstelle
    f steigt streng monoton an d.h. k>0 f‘ liegt oberhalb der x-Achse​  
    f sinkt streng monoton d.h. k<0 f‘ liegt unterhalb der x-Achse​  

    f ist symmetrisch zur y-Achse d.h. f ist eine gerade Funktion

    f‘ ist punktsymmetrisch zum Ursprung d.h. f‘ ist eine ungerade Funktion f‘‘ ist symmetrisch zur y-Achse, d.h. f‘‘ ist eine gerade Funktion
    f ist punktsymmetrisch zum Ursprung d.h. f ist eine ungerade Funktion f‘ ist symmetrisch zur y-Achse d.h. f‘ ist eine gerade Funktion f‘‘ ist punktsymmetrisch zum Ursprung d.h. f‘‘ ist eine ungerade Funktion
    Die Steigung k der Tangente … … ist der Funktionswert der Ableitung  
      Die Steigung k der Tangente … … ist der Funktionswert der Ableitung

     


    Zusammenhang zwischen höheren Ableitungen

    Je mehr Ableitungen man von einer Funktion kennt, um so genauere Aussagen kann man über den Verlauf vom Graph der Funktion machen

    \(f\left( {{x_0}} \right) = 0\) ⇒ f(x) hat eine Nullstelle an der Stelle x0
    \(f'\left( {{x_0}} \right) > 0\) ⇒ f(x0) ist streng monoton wachsend
    \(f'\left( {{x_0}} \right) < 0\) ⇒ f(x0) ist streng monoton fallend
    \(f'\left( {{x_0}} \right) = 0\) ⇒ f(x0) hat eine waagrechte Tangente an der Stelle x0
    \(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) > 0\) ⇒ f(x0) hat Tiefpunkt / lokales Minimum an der Stelle x0
    \(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) < 0\) ⇒ f(x0) hat Hochpunkt / lokales Maximum an der Stelle x0
    \(f''\left( {{x_0}} \right) > 0\) ⇒ f(x0) ist links / positiv / konkav gekrümmt
    \(f''\left( {{x_0}} \right) < 0\) ⇒ f(x0) ist rechts / negativ / konvex gekrümmt
    \(f''\left( {{x_0}} \right) = 0{\text{ und }}f'''\left( {{x_0}} \right) \ne 0\) ⇒ f(x0) hat einen Wendepunkt (Graph ändert sein Krümmungsverhalten) an der Stelle x0; Der WP ist jener Punkt, an dem f(x) die stärkste Steigung hat.
    \(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) = 0{\text{ und }}f'''\left( {{x_0}} \right) \ne 0\) ⇒ f(x0) hat einen Sattelpunkt (=Wendepunkt mit waagrechter Tangente) an der Stelle x0

    Graph mit Hochpunkt

    Funktion f f(x) = Wenn[0.1 < x < 11.5, 5 - (0.25x - 1.5)²] Strecke h Strecke h: Strecke [A, (6, 0)] Strecke g Strecke g: Strecke [(3.01, 5.03), (9.01, 5.03)] Punkt A Punkt A: Max[f, 0, 10] Punkt A Punkt A: Max[f, 0, 10] x_0 text1 = "x_0" x_0 text1 = "x_0" Hochpunkt bzw lokales Maximum text4 = "Hochpunkt bzw lokales Maximum" f '(x_0)=0 f ''(x_0)<0 text5 = "f '(x_0)=0 f ''(x_0)<0" f '(x_0)=0 f ''(x_0)<0 text5 = "f '(x_0)=0 f ''(x_0)<0" f '(x_0)=0 f ''(x_0)<0 text5 = "f '(x_0)=0 f ''(x_0)<0" f '(x_0)=0 f ''(x_0)<0 text5 = "f '(x_0)=0 f ''(x_0)<0" f '(x_0)=0 f ''(x_0)<0 text5 = "f '(x_0)=0 f ''(x_0)<0" f '(x_0)=0 f ''(x_0)<0 text5 = "f '(x_0)=0 f ''(x_0)<0"


    Graph mit Tiefpunkt

    Funktion f f(x) = Wenn[0.1 < x < 11.5, 5 + (0.25x - 1.5)²] Strecke h Strecke h: Strecke [A, (6, 0)] Strecke g Strecke g: Strecke [(3.12, 4.97), (9.12, 4.97)] Punkt A Punkt A: Min[f, 0, 10] Punkt A Punkt A: Min[f, 0, 10] x_0 text1 = "x_0" x_0 text1 = "x_0" f '(x_0)=0 f ''(x_0) > 0 text3 = "f '(x_0)=0 f ''(x_0) > 0" f '(x_0)=0 f ''(x_0) > 0 text3 = "f '(x_0)=0 f ''(x_0) > 0" f '(x_0)=0 f ''(x_0) > 0 text3 = "f '(x_0)=0 f ''(x_0) > 0" f '(x_0)=0 f ''(x_0) > 0 text3 = "f '(x_0)=0 f ''(x_0) > 0" f '(x_0)=0 f ''(x_0) > 0 text3 = "f '(x_0)=0 f ''(x_0) > 0" f '(x_0)=0 f ''(x_0) > 0 text3 = "f '(x_0)=0 f ''(x_0) > 0" Tiefpunkt bzw lokales Minimum text4 = "Tiefpunkt bzw lokales Minimum"


    Graph mit Wendepunkt

    Funktion p p(x) = (-(x - 0.98)³) / 8 + 2 (x - 0.98) + 1.73 Strecke f Strecke f: Strecke [B, C] Strecke h Strecke h: Strecke [A, (1.29, 0)] Punkt A Punkt A: Punkt auf p Punkt A Punkt A: Punkt auf p x_0 text1 = "x_0" x_0 text1 = "x_0" Wendepunkt text4 = "Wendepunkt" f ''(x_0)=0 f '''(x_0)≠0 Text1 = "f ''(x_0)=0 f '''(x_0)≠0" f ''(x_0)=0 f '''(x_0)≠0 Text1 = "f ''(x_0)=0 f '''(x_0)≠0" f ''(x_0)=0 f '''(x_0)≠0 Text1 = "f ''(x_0)=0 f '''(x_0)≠0" f ''(x_0)=0 f '''(x_0)≠0 Text1 = "f ''(x_0)=0 f '''(x_0)≠0" f ''(x_0)=0 f '''(x_0)≠0 Text1 = "f ''(x_0)=0 f '''(x_0)≠0" f ''(x_0)=0 f '''(x_0)≠0 Text1 = "f ''(x_0)=0 f '''(x_0)≠0"


    Graph mit Sattelpunkt

    Funktion j j(x) = Wenn[0.1 < x < 6.01, 5 - (0.25x - 1.5)²] Funktion f f(x) = Wenn[6.01 < x < 11.5, 5 + (0.25x - 1.5)²] Strecke h Strecke h: Strecke [A, (6.01, 0)] Strecke i Strecke i: Strecke [(4, 5), (8, 5)] Punkt A Punkt A: Max[j, 0, 6.01] Punkt A Punkt A: Max[j, 0, 6.01] x_0 text1 = "x_0" x_0 text1 = "x_0" f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0 text2 = "f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0" f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0 text2 = "f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0" f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0 text2 = "f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0" f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0 text2 = "f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0" f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0 text2 = "f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0" f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0 text2 = "f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0" f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0 text2 = "f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0" f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0 text2 = "f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0" f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0 text2 = "f '(x_0)=0 f ''(x_0)=0 f '''(x_0)≠0" Wende- zugleich Sattelpunkt text4 = "Wende- zugleich Sattelpunkt"

    Grafisches Differenzieren
    Extremstelle
    Lokales Minimum einer Funktion
    Lokales Maximum einer Funktion
    NEW-Regel
    Hochpunkt einer Funktion
    Tiefpunkt einer Funktion
    Wendepunkt einer Funktion
    Nullstelle einer Funktion
    positive Krümmung
    negative Krümmung
    Sattelpunkt einer Funktion
    Streng monoton wachsende Funktion
    Streng monoton fallende Funktion
    Punktsymmetrisch zum Ursprung
    Gerade Funktion
    Ungerade Funktion
    oberhalb der x-Achse
    unterhalb der x-Achse
    Zusammenhang zwischen höheren Ableitungen
    Waagrechte Tangente einer Funktion
    Links gekrümmter Graph einer Funktion
    Rechts gekrümmter Graph einer Funktion
    Extremstellen einer Funktion
    Stärkste Steigung einer Funktion
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Poolliegen 1050 x 450
    Startseite
    Aufgaben
    Lösungsweg

    Aufgabe 6018

    Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis​

    Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst


    Gegeben ist die Funktion f mit

    \(f\left( x \right) = \dfrac{1}{{x + 1}} - \dfrac{1}{{x + 3}}{\text{ mit }}{D_f} = {\Bbb R}\backslash \left\{ { - 3; - 1} \right\}\).

    Der Graph von f wird mit Gf bezeichnet.


    1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20

    Zeigen Sie, dass f (x) zu jedem der drei folgenden Terme äquivalent ist:

    • Term 1: \(\dfrac{2}{{\left( {x + 1} \right) \cdot \left( {x + 3} \right)}}\)
       
    • Term 2: \(\dfrac{2}{{{x^2} + 4x + 3}}\)
       
    • Term 3: \(\dfrac{1}{{0,5 \cdot {{\left( {x + 2} \right)}^2} - 0,5}}\)

    2. Teilaufgabe b.1) 1 BE - Bearbeitungszeit: 2:20

    Begründen Sie, dass die x-Achse horizontale Asymptote von Gf ist.


    3. Teilaufgabe b.2) 1 BE - Bearbeitungszeit:2:20

    Geben Sie die Gleichungen der vertikalen Asymptoten von Gf an.


    4. Teilaufgabe b.3) 1 BE - Bearbeitungszeit: 2:20

    Bestimmen Sie die Koordinaten des Schnittpunkts von Gf mit der y-Achse.


    Die nachfolgende Abbildung 1 zeigt den Graphen der in \({\Bbb R}\) definierten Funktion 

    \(p:x \mapsto 0,5 \cdot {\left( {x + 2} \right)^2} - 0,5\),  die die Nullstellen x=- 3 und x=-1 hat.

    Für \(x \in {D_f}{\text{ gilt }}f\left( x \right) = \dfrac{1}{{p\left( x \right)}}\)

    Funktion p p(x) = 0.5(x + 2)² - 0.5

    Gemäß der Quotientenregel gilt für die Ableitungen f‘ und p‘ die Beziehung

    \(f'\left( x \right) = - \dfrac{{p'\left( x \right)}}{{{{\left( {p\left( x \right)} \right)}^2}}}{\text{ für x}} \in {{\text{D}}_f}\)

    5. Teilaufgabe c.1) 1 BE - Bearbeitungszeit: 2:20

    Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f‘(x) und p‘(x), dass x=-2 einzige Nullstelle von f‘ ist.


    6. Teilaufgabe c.2) 1 BE - Bearbeitungszeit: 2:20

    Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f‘(x) und p‘(x), dass Gf in \(\left] { - 3;2} \right[\) streng monoton steigend ist


    7. Teilaufgabe c.3) 1 BE - Bearbeitungszeit: 2:20

    Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f‘(x) und p‘(x), dass Gf in \(\left] { - 2; - 1} \right[\) streng monoton fallend ist.


    8. Teilaufgabe c.4) 2 BE - Bearbeitungszeit: 4:40

    Geben Sie Lage des Extrempunkts von Gf an.

    Geben Sie Art des Extrempunkts von Gf an.


    9. Teilaufgabe d.1) 2 BE - Bearbeitungszeit: 4:40

    Berechnen Sie f (-5) und f (-1,5)


    10. Teilaufgabe d.2) 2 BE - Bearbeitungszeit: 4:40

    Skizzieren Sie Gf unter Berücksichtigung der bisherigen Ergebnisse in Abbildung 1.

    kostenlose Vorbereitung Mathe Abitur Bayern 2015 - Teil B - Analysis
    Polstelle
    Asymptote
    Hochpunkt einer Funktion
    Monoton fallende Funktion
    Monoton wachsende Funktion
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Poolliegen 1050 x 450
    Startseite
    LösungswegBeat the Clock

    Aufgabe 224

    Kurvendiskussion

    Führe für folgende Funktion eine Kurvendiskussion durch:

    \(f\left( x \right) = \dfrac{{{x^3}}}{{{x^2} - 9}}\)

    • 1. Teilaufgabe: Definitionsbereich, Stetigkeit und Differenzierbarkeit
    • 2. Teilaufgabe: Polstellen
    • 3. Teilaufgabe: Lücken
    • 4. Teilaufgabe: Verhalten im Unendlichen
    • 5. Teilaufgabe: Gleichung der Asymptoten
    • 6. Teilaufgabe: Symmetrien
    • 7. Teilaufgabe: Schnittpunkte mit den Koordinatenachsen
    • 8. Teilaufgabe: Berechne die 1. Ableitung
    • 9. Teilaufgabe: Berechne die 2. Ableitung
    • 10. Teilaufgabe: Berechne die 3. Ableitung
    • 11. Teilaufgabe: Berechne die Nullstellen
    • 12. Teilaufgabe: Berechne die Extremstellen - untersuche auf Hoch- und Tiefpunkte
    • 13. Teilaufgabe: Berechne die Extremstellen - untersuche auf Wende- und Sattelpunkte
    • 14. Teilaufgabe: Bestimme die Wendetangente in der Hauptform und in der Punkt-Richtungsform
    • 15. Teilaufgabe: Erstelle eine Wertetabelle
    • 16. Teilaufgabe: Skizziere die Funktion
    Polstelle
    Lücke im Definitionsbereich
    Asymptote
    Hochpunkt einer Funktion
    Tiefpunkt einer Funktion
    Wendestelle einer Funktion
    Sattelpunkt einer Funktion
    Tangente im Wendepunkt einer Funktion
    Kurvendiskussion - 224. Aufgabe
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4003

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2017 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Fußballspielen im Park - Aufgabe A_250

    Teil a

    Roland und Julia spielen im Park Fußball. Roland legt den Ball auf die horizontale Wiese, nimmt Anlauf und schießt. Die Flugbahn des Balls kann näherungsweise durch den Graphen einer Polynomfunktion 3. Grades h beschrieben werden. Dabei wird der Ball als punktförmig angenommen.

    \(h\left( x \right) = - 0,003 \cdot {x^3} + 0,057 \cdot {x^2}{\text{ mit }}x \geqslant 0\)

    x horizontale Entfernung des Balls von der Abschussstelle in Metern (m)
    h(x) Höhe des Balls über dem Boden an der Stelle x in m

    1. Teilaufgabe - Bearbeitungszeit 5:40

    Ermitteln Sie den für diesen Sachzusammenhang größtmöglichen sinnvollen Definitionsbereich für die Funktion h. [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40

    Berechnen Sie den höchsten Punkt der Flugbahn. [1 Punkt]

    Fußballspielen im Park - Fussballspielen im Park - Aufgabe A_250
    Nullstelle einer Funktion
    Hochpunkt einer Funktion
    Potenzen differenzieren
    Geogebra Extremum
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
    Funktionale Zusammenhänge
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 3.1
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 4.4
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 4081

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Flussläufe und Pegelstände - Aufgabe A_266

    Teil a

    Während eines Hochwassers wurde über den Zeitraum von einer Woche der Pegelstand eines Flusses ermittelt. Den Messergebnissen zufolge kann der zeitliche Verlauf des Pegelstands näherungsweise durch die Funktion p beschrieben werden:
    \(p\left( t \right) = - 3,5 \cdot {10^{ - 6}} \cdot {t^3} + 6,3 \cdot {10^{ - 4}} \cdot {t^2} - 0,011 \cdot t + 7,661\) mit \(0 \le t \le 168\)

    wobei

    t Zeit in h
    p(t) Pegelstand zur Zeit t in m

     

    1. Teilaufgabe - Bearbeitungszeit 5:40
    Berechnen Sie die Abweichung des höchsten Pegelstands während des Hochwassers vom „üblichen“ Pegelstand von 2,5 m.
    [1 Punkt]

     


    Zur Zeit t1 gilt:
    \(p''\left( {{t_1}} \right) = 0\)

    2. Teilaufgabe - Bearbeitungszeit 5:40
    Interpretieren Sie die Bedeutung von t1 im gegebenen Sachzusammenhang.
    [1 Punkt]

    Flussläufe und Pegelstände - Aufgabe A_266
    Hochpunkt einer Funktion
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2018 - kostenlos vorgerechnet
    Differenzialrechnung
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 4.4
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 1150

    AHS - 1_150 & Lehrstoff: AN 3.3
    Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Polynomfunktion – Funktionsuntersuchung
    Gegeben ist eine Polynomfunktion f mit der Funktionsgleichung \(f\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\) mit den Parametern \(a \ne 0;\,\,\,\,\,\,\,a,\,\,b,\,\,c,\,\,d \in {\ {\Bbb R}}\) . Die Funktion f hat einen Hochpunkt im Punkt H = (2|2) und einen Wendepunkt an der Stelle x2 = –1. An der Stelle x3 = 3 hat die Steigung der Funktion den Wert –9.

    • Aussage 1: \(f'\left( 3 \right) = - 9\)
    • Aussage 2: \(f\left( 2 \right) = 0\)
    • Aussage 3: \(f''\left( { - 1} \right) = 0\)
    • Aussage 4: \(f'\left( 2 \right) = 0\)
    • Aussage 5: \(f''\left( 2 \right) = 0\)

    Aufgabenstellung:
    Kreuzen Sie die zutreffende(n) Aussage(n) an!

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AN 3.3
    Polynomfunktion 3. Grades
    Hochpunkt einer Funktion
    Wendepunkt einer Funktion
    Zusammenhang zwischen höheren Ableitungen
    Polynomfunktion – Funktionsuntersuchung - 1150. Aufgabe 1_150
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Poolliegen 1050 x 450
    Startseite
    Lösungsweg

    Aufgabe 1725

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
    Quelle: AHS Matura vom 20. September 2019 - Teil-1-Aufgaben - 16. Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Eigenschaften einer Polynomfunktion dritten Grades

    Gegeben ist eine Polynomfunktion f dritten Grades. An den beiden Stellen x1 und x2 mit x1 < x2 gelten folgende Bedingungen:
    \(\eqalign{
    & f'\left( {{x_1}} \right){\text{ = 0 und }}f''\left( {{x_1}} \right) < 0 \cr
    & f'\left( {{x_2}} \right) = 0{\text{ und }}f''\left( {{x_2}} \right) > 0 \cr} \)


    Aufgabenstellung:
    Kreuzen Sie die beiden Aussagen an, die für die Funktion f auf jeden Fall zutreffen.

    • Aussage 1: \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\)
    • Aussage 2: Es gibt eine weitere Stelle x3 mit \(f'\left( {{x_3}} \right) = 0\)
    • Aussage 3: Im Intervall \(\left[ {{x_1},{x_2}} \right]\) gibt es eine Stelle x3 mit \(f\left( {{x_3}} \right) > f\left( {{x_1}} \right)\)
    • Aussage 4: Im Intervall \(\left[ {{x_1},{x_2}} \right]\) gibt es eine Stelle x3 mit \(f''\left( {{x_3}} \right) = 0\)
    • Aussage 5: Im Intervall \(\left[ {{x_1},{x_2}} \right]\) gibt es eine Stelle x3 mit \(f'\left( {{x_3}} \right) > 0\)

    [0 / 1 Punkt]

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AN 3.3
    Eigenschaften einer Polynomfunktion dritten Grades - 1725. Aufgabe 1_725
    Hochpunkt einer Funktion
    Tiefpunkt einer Funktion
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 1846

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
    Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 17. Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Funktionseigenschaften

    In der nachstehenden Abbildung ist der Graph der 1. Ableitungsfunktion f′ einer Polynomfunktion f dargestellt.

    Bild
    beispiel_1846_1

    Aufgabenstellung:
    Kreuzen Sie die beiden Aussagen an, die auf die Funktion f auf jeden Fall zutreffen.

    • Aussage 1: Im Intervall [–3; 3] ist die Funktion f streng monoton steigend.
    • Aussage 2: Der Graph von f ist im Intervall [–3; 3] symmetrisch zur senkrechten Achse.
    • Aussage 3: Die Funktion f hat im Intervall [–3; 3] mindestens eine Wendestelle.
    • Aussage 4: Im Intervall [–3; 3] sind alle Funktionswerte von f positiv.
    • Aussage 5: Die Funktion f hat im Intervall [–3; 3] mindestens eine lokale Extremstelle.

    [2 aus 5]

    [0 / 1 P.]

    Funktionseigenschaften - 1846. Aufgabe 1_846
    Streng monoton wachsende Funktion
    Hochpunkt einer Funktion
    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AN 3.3
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4163

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Vitamin C - Aufgabe A_281

    Teil c

    Nach der Einnahme einer Vitamin-C-Tablette steigt die Vitamin-C-Konzentration im Blut zunächst an und sinkt danach wieder ab. Die Funktion c beschreibt näherungsweise den zeitlichen Verlauf der Vitamin-C-Konzentration im Blut einer bestimmten Person.
    \(c\left( t \right) = 24 \cdot \left( {{e^{ - 0,0195 \cdot t}} - {e^{ - 1,3 \cdot t}}} \right) + 3\)

    • t ... Zeit seit der Einnahme der Vitamin-C-Tablette in h
    • c(t) ... Vitamin-C-Konzentration im Blut zur Zeit t in Mikrogramm pro Milliliter (μg/ml)

     

    1. Teilaufgabe - Bearbeitungszeit 5:40

    Zeigen Sie, dass die maximale Vitamin-C-Konzentration im Blut der Person gerundet \(25,18\,\,\mu g/ml\) beträgt.

    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40

    Kreuzen Sie denjenigen Ausdruck an, der die maximale Vitamin-C-Konzentration in mg/L angibt.

    [1 aus 5] [1 Punkt]

    • Aussage 1: 0,02518 mg/L
    • Aussage 2: 25,18 mg/L
    • Aussage 3: 25 180 mg/L
    • Aussage 4: 0,00002518 mg/L
    • Aussage 5: 25 180 000 mg/L
    Vitamin C - Aufgabe A_281
    Hochpunkt einer Funktion
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2019 - kostenlos vorgerechnet
    Zahlen und Maße
    Differenzialrechnung
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 4.4
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 1.3
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4314

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Ganzkörperhyperthermie - Aufgabe A_158

    Bei einem Therapieverfahren wird die Körpertemperatur bewusst stark erhöht (künstliches Fieber).

    Teil b

    1. Teilaufgabe - Bearbeitungszeit 5:40

    Dokumentieren Sie, wie die maximale Körpertemperatur im angegebenen Zeitintervall mithilfe der Differenzialrechnung berechnet werden kann.

    Bild
    Beispiel_4313_1

    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40

    Begründen Sie, warum der Graph einer Polynomfunktion 3. Grades höchstens 2 Extrempunkte haben kann.
    [1 Punkt]

    Ganzkörperhyperthermie - Aufgabe A_158
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2015 - kostenlos vorgerechnet
    Hochpunkt einer Funktion
    Anzahl an Extremstellen
    Differenzialrechnung
    Polynomfunktion
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 4.4
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Poolliegen 1050 x 450
    Startseite
    Lösungsweg

    Aufgabe 4405

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Limnologie - Aufgabe B_478

    Die Limnologie erforscht wichtige Kenngrößen von stehenden Gewässern wie etwa Temperatur oder Dichte.

    Teil c

    Die Dichte von Wasser in Abhängigkeit von der Temperatur kann unter bestimmten Bedingungen näherungsweise durch die Funktion ϱ beschrieben werden:
    \(\rho \left( T \right) = a - b \cdot {\left( {T - 4} \right)^2}{\text{ mit }}0 < \rho \leqslant 10\)

    T

    Temperatur in °C

    \(\rho \left( T \right)\)  
    a,b  

     

    1. Teilaufgabe - Bearbeitungszeit 5:40

    Lesen Sie aus der obigen Funktionsgleichung die Koordinaten des Scheitelpunkts S von ϱ ab.

    S = ( | )

    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40

    Argumentieren Sie mathematisch, dass der Scheitelpunkt ein Hochpunkt der Funktion ϱ ist.

    [1 Punkt]


    Es gilt: a = 999,972 und b = 0,007

    Die Gleichung einer Tangente an den Graphen der Funktion ϱ lautet:

    \(f\left( T \right) = 0,028 \cdot T + d\)

    3. Teilaufgabe - Bearbeitungszeit 5:40

    Berechnen Sie den Parameter d.

    [1 Punkt]


    Jemand verwendet zur Berechnung der Dichte von Wasser bei 10 °C die obige Funktion ϱ mit den Parametern a = 999,972 und b = 0,007. Die Dichte von Wasser bei 10 °C beträgt jedoch laut einer Tabelle 999,700 kg/m3.

    4. Teilaufgabe - Bearbeitungszeit 5:40

    Berechnen Sie den Betrag des absoluten Fehlers bei Verwendung der Funktion ϱ anstelle des Tabellenwerts.

    [1 Punkt]

    Limnologie - Aufgabe B_478
    Mathematik Zentralmatura BHS - Mai 2020 - kostenlos vorgerechnet
    Scheitelpunktform der Parabel
    Hochpunkt einer Funktion
    Tangente in einem Punkt der Parabel
    Absolute Änderung
    Absoluter und relativer Fehler
    Quadratische Funktion
    Differenzialrechnung
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_T_1.1
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_T_3.2
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_T2_4.4
    Fragen oder Feedback

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Smartphone
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH