Hookesches Gesetz
Hier findest du folgende Inhalte
Formeln
Kraft, Feld, Wechselwirkung und Austauschteilchen
Kraft
Kraft ist etwas, was sich zwischen 2 Objekten abspielt. Kraft ist die Wirkung eines materiellen Teilchens auf ein anderes materielles Teilchen. Sie bewirkt eine Änderung der Bewegung von Masse.
Newton
Newton N ist die Einheit der Kraft F. 1 Newton ist die Kraft die benötigt wird, um einen ruhenden Körper mit 1 kg Masse innerhalb einer Sekunde aus der Ruhe auf die Geschwindigkeit von 1m/s zu beschleunigen.
Feld
Ein Feld ist eine Energieform, die den Raum erfüllt. Felder können sich mit endlicher Geschwindigkeit ausbreiten, wobei ihre Dynamik durch Feldgleichungen beschrieben wird. Die heutige Physik kennt 4 fundamentale Felder: Das Gravitationsfeld, das Starke und das Schwache Kernfeld, das Elektromagnetische Feld und das Higgs-Feld.
Wechselwirkung
Von einer Wechselwirkung spricht man, wenn eines der 12 bekannten Elementarteilchen auf ein anderes fundamentales Teilchen einwirkt, welches der selben Wechselwirkung unterliegt. Dabei kommt es oft auch zur Annihilation (der gegenseitigen Auslöschung). Die heutige Physik kennt 4 fundamentale Wechselwirkungen: Gravitation, elektromagnetische Wechselwirkung, starke und schwache Wechselwirkung
Austauschteilchen
Austauschteilchen, auch Bosonen genannt, sind die Träger bzw. die Vermittler der 4 fundamentalen Wechselwirkungen. Sie manifestieren sich als Kräfte. Ein bestimmtes Austauschteilchen kann nur dann emittiert oder absorbiert werden, wenn das materielle Teilchen der entsprechenden Wechselwirkung unterliegt. Die heutige Physik kennt folgende Austauschteilchen: Higgs-Boson, Gluon, W+, W-, Z0 Bosonen und das hypothetische Graviton
Federkraft
Die Federkraft F wirkt der Dehnung der Feder durch eine äußere Kraft entgegen. Sie hängt von der Dehnung x der Feder und der Federkonstante k ab.
\(\overrightarrow F = - k \cdot \overrightarrow x\)
\({\text{Federkraft}} = - {\text{Federkonstante}} \cdot {\text{Federdehnung}} \)
\({\text{Einheit: }}1N = 1\dfrac{{kg \cdot m}}{{{s^2}}}\)
Das „-“ kommt daher, dass die Federkraft und die Dehnung entgegen gesetzt gerichtet sind. Die Federkonstante k ist ein Maß dafür, wie „schwer“ es ist, die Feder zu dehnen.
Hookesches Gesetz
Das Hooksche Gesetz beschreibt eine Längenänderung zufolge einer Kraftänderung. Bei elastisch verformbaren Körpern kommt es nämlich zu einer Längenänderung x, die der einwirkenden Kraft F proportional ist. Wird die einwirkende Kraft zu groß, dan geht die (reversible) elastische Verformung in eine plastische Verformung oder einen Materialbruch über, für die das Hooksche Gesetz dann nicht mehr gilt.
\(\left| k \right| = D = \dfrac{{{\rm{Kraftänderung}}}}{{{\rm{Längenänderung}}}} = \dfrac{{\Delta F}}{{\Delta x}}\)
Reibungskraft
Die Reibungskraft hemmt die freie Bewegung zwischen Körpern die einander berühren. Man unterscheidet zwischen Haftreibung, Gleitreibung und Rollreibung.
\(\overrightarrow {{F_R}} = \mu \cdot \overrightarrow {{F_N}}\)
\({F_{{\text{Haftreibung}}}} > {F_{{\text{Gleitreibung}}}} > {F_{{\text{Rollreibung}}}}\)
\({\text{Reibung = Reibungskoeffizient}} \cdot {\text{Normalkraft}}\)
\({\text{Einheit: }}1N = 1\dfrac{{kg \cdot m}}{{{s^2}}}\)
- Haftreibung: Zieht man an einem ruhenden Körper, und ist die Zugkraft größer als die entgegengesetzt orientierte Haftreibungskraft, dann setzt sich der Körper in Bewegung.
- Gleitreibung: Sobald der Körper einmal in Bewegung ist, wirkt nur mehr die wesentlich kleinere Gleitreibungskraft, die aufzuwenden ist, um den Körper in Bewegung zu halten
- Rollreibung: Die Gleitreibung kann herabgesetzt werden, wenn man zwischen die reibenden Körperflächen Rollen / Räder einbringt.
Der Reibungskoeffizient ist dabei jeweils der Quotient aus dem Reibungswiderstand und jener Kraftkomponente mit der die beiden Flächen aufeinander gedrückt werden.
Gewichtskraft
Während die Masse eines Körpers überall im Universum gleich ist, ist sein Gewicht / seine Gewichtskraft abhängig von der Masse des Körpers und von der Schwerebeschleunigung, die durch das Gravitationsfeld des jeweiligen Himmelskörpers verursacht wird.
\(\overrightarrow G = m \cdot \overrightarrow g ;\)
\({\text{Gewicht(skraft) = Masse}} \cdot {\text{Erdbeschleunigung}}\)
\({\text{Einheit: }}kg \cdot \dfrac{m}{{{s^2}}}\)
Schwerebeschleunigung auf der Oberfläche | |
Erde | \({g_E} = 9,81\dfrac{m}{{{s^2}}}\) |
Mond | \({g_M} = 1,62\dfrac{m}{{{s^2}}}\) |
Sonne | \({g_S} = 274\dfrac{m}{{{s^2}}}\) |
Auf der Erdoberfläche übt eine Masse von 1 kg ein(e) Gewicht(skraft) von 9,81N aus. Auf einer Waage stehend (Personenwaagen sind Federwaagen) ermittelt man seine Masse (70 kg) und nicht wie umgangssprachlich gesagt sein Gewicht. Das Gewicht ist nämlich 9,81 mal größer als die Masse, also 70N*9,81=686,7 N ;-)
Auftrieb(skraft)
Das Gesetz des Archimedes besagt, dass die Auftriebskraft betragsgleich dem Gewicht, der durch das Volumen des Körpers verdrängten Flüssigkeit bzw. des verdrängten Gases ist. Der Auftrieb wächst proportional mit dem Volumen des Körpers und der spezifischen Dichte des flüssigen oder gasförmigen Mediums in dem er sich befindet. Die Erdbeschleunigung geht in die Formel ein, weil sich das Gewicht der verdrängten Flüssigkeit / Gases aus seiner Masse mal der Erdbeschleunigung errechnet.
\(\overrightarrow {{F_A}} = \rho \cdot \overrightarrow g \cdot V\)
\({\text{Auftrieb}} = {\text{Dichte}} \cdot {\text{Erdbeschleunigung}} \cdot {\text{Volumen;}}\)
\({\text{Einheit: }}\dfrac{{kg}}{{{m^3}}} \cdot \dfrac{m}{{{s^2}}} \cdot {m^3} = 1\dfrac{{kg \cdot m}}{{{s^2}}} = 1N\)
Astrologie
Das von Astrologen erstellte Horoskop basiert auf der Vorstellung, aus der
- Geburtszeit und dem aktuellen Datum sowie
- Position von Sonne, Mond, Planeten und den Tierkreiszeichen (real sind das weit entfernte Sonnen)
Rückschlüsse auf zukünftige Ereignisse und die Persönlichkeit eines Menschen ableiten zu können.
Aus Sicht der Physik wirkt tatsächlich genau eine einzige der 4 fundamentalen Wechselwirkungen zwischen einem Menschen auf der Erde und den Himmelskörpern - und sonst nichts. Dabei handelt es sich um die Gravitation, die in Form der sogenannten Gezeitenkraft tatsächlich eine Zugkraft auf den Menschen gemäß
\(\overrightarrow F = \overrightarrow G \dfrac{{{m_1} \cdot {m_2}}}{{{r^2}}}\)
ausübt. Nachfolgend eine Abschätzung der Größenordnung dieser Kraft.
Am Beispiel des Mondes der direkt über einem 70 kg schweren Menschen mit 2m Körpergröße steht, errechnet sich die Zugkraft gemäß:
\(G = 6,67 \cdot {10^{ - 11}}\dfrac{{N{m^2}}}{{k{g^2}}}\)
\(\begin{array}{l} {M_{{\rm{Mond}}}} = 7,349 \cdot {10^{22}}kg\\ {m_{{\rm{Mensch}}}} = 70kg\\ {R_{{\rm{Erde}}{\rm{,Mond}}}} = 384.400.000m\\ {r_{{\rm{Kopf}}{\rm{,Zehen}}}} = 2m \end{array}\)
somit kann man die Gezeitenkraft wie folgt ausrechnen
\(\begin{array}{l} {F_{{\rm{Kopf}}}} = G \cdot \dfrac{{m \cdot M}}{{{R^2}}}\\ {F_{{\rm{Zehen}}}} = G \cdot \dfrac{{m \cdot M}}{{{{\left( {R + r} \right)}^2}}}\\ \left( {R + r} \right) > R \Rightarrow {F_{{\rm{Kopf}}}} > {F_{{\rm{Zehen}}}} \to \Delta F = {F_{{\rm{Kopf}}}} - {F_{{\rm{Zehen}}}} = {\rm{Zugkraft}}\\ {F_{{\rm{Kopf}}}} - {F_{{\rm{Zehen}}}} = G \cdot \dfrac{{m \cdot M}}{{{R^2}}} - G \cdot \dfrac{{m \cdot M}}{{{{\left( {R + r} \right)}^2}}} = \\ = G \cdot \left( {\dfrac{{m \cdot M}}{{{R^2}}} - \dfrac{{m \cdot M}}{{{{\left( {R + r} \right)}^2}}}} \right) \approx \\ \approx 6,672 \cdot {10^{ - 11}}\dfrac{{{m^3}}}{{kg \cdot {s^2}}} \cdot \left( {\dfrac{{70kg \cdot 7,349 \cdot {{10}^{22}}kg}}{{{{\left( {384\,400\,000m} \right)}^2}}} - \dfrac{{70kg \cdot 7,349 \cdot {{10}^{22}}kg}}{{{{\left( {384\,400\,000m + 2m} \right)}^2}}}} \right) \approx \\ \approx 6,672 \cdot {10^{ - 11}} \cdot \left( {\dfrac{{70 \cdot 7,349 \cdot {{10}^{22}}}}{{384\,400\,{{000}^2}}} - \dfrac{{70 \cdot 7,349 \cdot {{10}^{22}}}}{{384\,400\,{{002}^2}}}} \right) \cdot \dfrac{{{m^3}.k{g^2}}}{{kg \cdot {s^2} \cdot {m^2}}} \approx \\ \approx 6,672 \cdot {10^{ - 11}} \cdot \left( {0,36227} \right)\dfrac{{m \cdot kg}}{{{s^2}}} \approx 2,41 \cdot {10^{ - 11}}N \approx 0,241 \cdot {10^{ - 12}}N \approx 0,241pN \end{array}\)
Da in dieser Anordnung die Beine des Menschen um 2m weiter vom Mond entfernt sind als der Kopf, übt der Mond zufolge der Gezeitenkraft eine Zugkraft von 0,241 pN, also 0,241 Billionstel eines Newton aus.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen