Intervall
Intervalle dienen dazu Zahlenbereiche noch oben und nach unten abzugrenzen.
Hier findest du folgende Inhalte
Formeln
Intervalle
Intervalle dienen dazu Zahlenbereiche noch oben und nach unten abzugrenzen. Eine Menge reeller Zahlen heißt Intervall, wenn diese Zahlen durch eine Strecke auf der Zahlengerade darstellbar sind.
Offenes Intervall
Bei einem offenen Intervall, bzw. einem Intervall mit offenen Grenzen, sind beide Grenzen selbst nicht mit eingeschlossen.. Das offene Intervall umfasst alle Zahlen, die zwischen dem unteren „u“ und dem oberen „o“ Grenzwert liegen, jedoch sind die beiden Grenzwerte „u“ bzw. „o“ selbst nicht Teil vom offenen Intervall.
\(\eqalign{ & u < x < o \cr & \left] {u;o} \right[ = \left\{ {x \in {\Bbb R}\left| {u < x < o} \right.} \right\} \cr}\)
Abgeschlossenes Intervall
Bei einem abgeschlossenen Intervall,bzw. einem Intervall mit geschlossenen Grenzen, sind beide Grenzen mit eingeschlossen. Das abgeschlossene Intervall umfasst alle Zahlen, die zwischen dem unteren „u“ und dem oberen „o“ Grenzwert liegen, inklusive der beiden Grenzwerte „u“ bzw. „o“.
\(\eqalign{ & u \leqslant x \leqslant o \cr & \left[ {u;o} \right] = \left\{ {x \in {\Bbb R}\left| {u \leqslant x \leqslant o} \right.} \right\} \cr}\)
Halboffenes Intervall
Das halboffene Intervall hat eine offene und eine geschlossene Grenze. Das halboffene Intervall umfasst alle Zahlen, die zwischen dem unteren „u“ und dem oberen „o“ Grenzwert liegen, jedoch ist eine der beiden Grenzen „u“ bzw. „o“ selbst mit eingeschlossen, während die jeweils andere Grenze nicht eingeschlossen ist.
\(\eqalign{ & u \leqslant x < o\,\,\,\,\,\,\,\,\,\,\left[ {u;o} \right[ = \left\{ {x \in {\Bbb R}\left| {u \leqslant x < o} \right.} \right\} \cr & u < x \leqslant o\,\,\,\,\,\,\,\,\,\,\left] {u;o} \right] = \left\{ {x \in {\Bbb R}\left| {u < x \leqslant o} \right.} \right\} \cr} \)
Unendliches Intervall
Das unendliche Intervall hat nur eine untere oder eine obere Grenze, die entweder zum Intervall gehört oder nicht. Aus der Zahlengerade wird so ein Zahlenstrahl.
\(\eqalign{ & u \leqslant x \cr & \left[ {u;\infty } \right] = \left\{ {x \in {\Bbb R}\left| {u \leqslant x} \right.} \right\} \cr} \)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1313
AHS - 1_313 & Lehrstoff: FA 1.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionswerte
Die nachstehende Abbildung zeigt den Graphen einer Polynomfunktion f vierten Grades.
Aufgabenstellung
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Für alle reellen Werte _____1______ gilt für die Funktionswerte dieser Funktion f _____2______ .
1 | |
\(x > 6\) | A |
\(x \in \left[ { - 1;1} \right]\) | B |
\(x \in \left[ {1;5} \right]\) | C |
2 | |
\(f\left( x \right) > 3\) | I |
\(f\left( x \right) \in \left[ { - 1;1} \right]\) | II |
\(f\left( x \right) \in \left[ {0;3} \right]\) | III |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.