Lineare Abweichung
Hier findest du folgende Inhalte
Formeln
Beschreibende bzw. deskriptive Statistik
Die beschreibende bzw. deskriptive Statistik stellt große Datenmengen (Vollerhebung, Grundgesamtheit) übersichtlich dar und verdichtet diese, damit charakteristische Eigenschaften der Datenmenge durch einfache Kennzahlen ausgedrückt werden können. Bei den statistischen Kennzahlen unterscheidet man zwischen Lage- und Streumaßen
Lagemaße:
Die Lagemaße geben Auskunft zur zentralen Tendenz, darüber wo sich die Werte konzentrieren.
- Modalwert = Modus
- Arithmetisches Mittel
- Gewichtetes / gewogenes arithmetisches Mittel
- Geometrisches Mittel
- Median =Zentralwert
- Quantil
Streuungsmaße:
Die Steuungsmaße geben Auskunft über die Breite der Verteilung, also zur Variabilität der Werte.
- Spannweite
- Lineare Abweichung
- Varianz
- Standardabweichung
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Streuung
Unter Streuung versteht man die Verteilung der einzelnen Werte um den Mittelwert. Eine schwache Streuung bedeutet, dass die Werte dicht beim Mittelwert liegen, während eine starke Streuung bedeutet, dass die Werte entfernt vom Mittelwert liegen.
Beispiel:
Die Werte 100, 200 und 300 haben einen Mittelwert von 200. Die Werte 199, 200 und 201 haben ebenfalls den Mittelwert 200, sie sind streuen aber erheblich weniger.
Streumaße
Streumaße geben Auskunft über die Breite der Verteilung, also zur Variabilität der Werte. Streumaße messen die Streuung.
R | Spannweite (engl. range) |
e | Mittlere lineare Abweichung |
\({{s^2}{\text{ bzw}}{\text{. }}{\sigma ^2}}\) | Varianz |
\({s{\text{ bzw}}{\text{. }}\sigma }\) | Standardabweichung |
Streudiagramme
Streudiagramme bilden paarweise verknüpfte Datensätze (X, Y) in Form einer zweidimensionalen Punktwolke ab.
Spannweite
Die Spannweite R (engl. range) ist die Differenz zwischen dem größten und dem kleinsten Wert der geordneten Datenreihe. Sie beinhaltet lediglich eine Aussage bezüglich der beiden Extremwerte, erlaubt aber keine Aussage bezüglich der Struktur der Einzelwertverteilung zwischen den beiden Extremwerten.
\(R = {x_{{\text{max}}}} - {x_{{\text{min}}}}\)
Mittlere lineare Abweichung
Der mittleren linearen Abweichung liegt der Abstand von jedem einzelnen Wert xi zum arithmetischen Mittelwert \(\overline x\) zugrunde.
\(e = \dfrac{{\left| {{x_1} - \overline x } \right| + \left| {{x_2} - \overline x } \right| + ...\left| {{x_n} - \overline x } \right|}}{n} = \dfrac{1}{n}\sum\limits_{i = 1}^n {\left| {{x_i} - \overline x } \right|}\)
Varianz einer Grundgesamtheit
Die Varianz \({\sigma ^2} = Var\left( X \right)\) dient der Beschreibung der Wahrscheinlichkeitsverteilung einer Grundgesamtheit und ist ein Streumaß der beschreibenden Statistik. Die Varianz ist ein Maß für die quadrierte durchschnittliche Entfernung aller Messwerte vom arithmetischen Mittelwert \({\overline x }\) bzw. vom Erwartungswert \(\mu \).
Der Varianz liegt der quadrierte Abstand jedes einzelnen Werts xi zum arithmetischen Mittelwert \(\overline x \) bzw. dem Erwartungswert \(\mu \) zugrunde. Die Varianz hat daher eine andere Einheit als die Messwerte, nämlich deren Quadrat. Diese "Unschönheit" löst man auf, indem man mit der Standardabweichung arbeitet, welche die Quadratwurzel aus der Varianz ist.
\(\eqalign{
& {\sigma ^2} = Var\left( X \right) = \dfrac{{{{\left( {{x_1} - \overline x } \right)}^2} + {{\left( {{x_2} - \overline x } \right)}^2} + ... + {{\left( {{x_n} - \overline x } \right)}^2}}}{n} \cr
& {\sigma ^2} = \dfrac{1}{n} \cdot \sum\limits_{i = 1}^n {{{\left( {{x_i} - \mu } \right)}^2}} = \dfrac{1}{n} \cdot \sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline x } \right)}^2}} \cr} \)
Varianz vs. empirische Varianz
Das Wort "empirisch" weist darauf hin, dass Daten einer Stichprobe analysiert werden, die aus der Beobachtung eines Prozesses gewonnen wurden.
Merke:
Um auszudrücken, dass es sich um eine Stichprobe und nicht um die Grundgesamtheit handelt, ersetzen wir \(\sigma \to s\)
Merke:
Bei bekannter Grundgesamtheit kommt \(\dfrac{1}{n}\), bei Stichproben kommt grundsätzlich \(\dfrac{1}{{n - 1}}\) zur Anwendung!
"unkorrigierte" Varianz einer Stichprobe
Bei der unkorrigierten Stichprobenvarianz wird die Summe der quadrierten Abweichungen durch die Anzahl der erhobenen Merkmalsausprägungen n dividiert. Wir kennen den Erwartungswert \(\mu \) der Grundgesamtheit nicht und verwenden daher den arithmetischen Mittelwert \(\overline x \) der Stichprobe! Um auszudrücken, dass es sich um eine Stichprobe und nicht um die Grundgesamtheit handelt, ersetzen wir \(\sigma \to s\)
\({s_n}^2 = \dfrac{1}{n} \cdot \sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline x } \right)}^2}} \)
Die unkorrigierte Varianz ist ein verzerrter Schätzer für die Varianz der Grundgesamtheit. Sie unterschätzt systematisch die wahre Varianz, insbesondere bei kleinen Stichproben, denn in der Regel ist die Streuung innerhalb einer Stichprobe etwas geringer als in der gesamten Population, da extreme Werte oft nicht in der Stichprobe enthalten sind.
„korrigierte“ Varianz einer Stichprobe, gemäß der Bessel-Korrektur
Die Bessel-Korrektur ist eine statistische Anpassung, die angewendet wird, um eine verzerrte Schätzung der Stichprobenvarianz zu korrigieren. Sie wird verwendet, weil die unkorrigierte Stichprobenvarianz dazu neigt, die wahre Varianz der Grundgesamtheit zu unterschätzen. Das ist vor allem bei kleinen Stichproben der Fall. Die Bessel-Korrektur besteht darin, den Nenner von n auf (n - 1) zu ändern, wodurch die Varianz größer wird:
\({s_{n - 1}}^2 = \dfrac{1}{{n - 1}} \cdot \sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline x } \right)}^2}} \)
Beispiel
Stichprobe: 2, 4, 6 somit n=3
Empirischer Mittelwert = Mittelwert der Stichprobe:
\(\overline x = \dfrac{{2 + 4 + 6}}{3} = \dfrac{{12}}{3} = 4\)
Unkorrigierte Varianz der Stichprobe:
\({s_n}^2 = \dfrac{{{{\left( {2 - 4} \right)}^2} + {{\left( {4 - 4} \right)}^2} + {{\left( {6 - 4} \right)}^2}}}{3} = \dfrac{{{{\left( { - 2} \right)}^2} + {{\left( 0 \right)}^2} + {{\left( 2 \right)}^2}}}{3} = \dfrac{8}{3} \approx 2,67\)
Korrigierte Varianz der Stichprobe, gemäß Bessel-Korrektur
\({s_{n - 1}}^2 = \dfrac{{{{\left( {2 - 4} \right)}^2} + {{\left( {4 - 4} \right)}^2} + {{\left( {6 - 4} \right)}^2}}}{{3 - 1}} = \dfrac{{{{\left( { - 2} \right)}^2} + {{\left( 0 \right)}^2} + {{\left( 2 \right)}^2}}}{2} = \dfrac{8}{2} = 4\)
Varianz \(\sigma ^2\) einer diskreten Zufallsvariablen X mit den Werten x1, x2, ..., xk berechnen
\({\sigma ^2} = Var\left( X \right) = E{\left( {X - E\left( X \right)} \right)^2} = E\left( {{X^2}} \right) - {\left( {E\left( X \right)} \right)^2}\)
- Von jedem Wert xi der Zufallsvariablen X wird der Erwartungswert \(E\left( X \right) = \mu \) abgezogen.
- Diese Differenz wird quadriert
- Davon bildet man erneut den Erwartungswert, um so die Varianz zu erhalten.
\({\sigma ^2} = V\left( X \right) = Var\left( X \right) = {\sum\limits_{i = 1}^k {\left( {{x_i} - \mu } \right)} ^2} \cdot P\left( {X = {x_i}} \right) = {\sum\limits_{i = 1}^k {\left( {{x_i} - E\left( X \right)} \right)} ^2} \cdot P\left( {X = {x_i}} \right)\)
- Es wird jeweils vom Wert xi der diskreten Zufallsvariablen X der Erwartungswert E(X) abgezogen.
- Diese Differenz quadriert man und anschließend multipliziert man noch mit der Wahrscheinlichkeit P(X = xi).
- So verfährt man mit jedem Wert xi und summiert letztlich die einzelnen Ergebnisse auf, um so die Varianz zu erhalten.
Standardabweichung
Die Standardabweichung ist ein Maß für die durchschnittliche Entfernung aller Messwerte vom arithmetischen Mittelwert. Je stärker die Werte um den arithmetischen Mittelwert streuen um so höher ist die Standardabweichung. Die Standardabweichung einer Stichprobe ist umso größer, je kleiner der Stichprobenumfang ist. Der Graph der Dichtefunktion ist umso breiter und verläuft umso flacher, je kleiner die Stichprobe ist.
- \(\sigma\) ist die übliche Bezeichnung, wenn es sich um die Standardabweichung der Grundgesamtheit handelt.
- s ist die übliche Bezeichnung, wenn die Standardabweichung aus einer Stichprobe ermittelt wurde.
Beispiel: 10 Personen werden gefragt, wie viel sie für einen Sommerurlaub ausgeben. Der Mittelwert der 10 Ausgaben liegt bei 2.000€, die Standardabweichung liegt bei 200 €. Das bedeutet dass die durchschnittliche Entfernung aller Antworten vom Mittelwert 200 € beträgt.
Unterschied Standardabweichung und Varianz
- Die Standardabweichung ist ein Maß für die durchschnittliche, während die Varianz ein Maß für das Quadrat der durchschnittlichen Entfernung aller Messwerte vom arithmetischen Mittelwert ist.
- Der Vorteil der Standardabweichung gegenüber der Varianz ist, dass nicht Quadrate der Einheiten (z.B. Euro2) sondern die eigentlichen Einheiten der gemessenen Werte (z.B. Euro) verwendet werden.
- Die Standardabweichung ist die Wurzel aus der Varianz. Standardabweichung und Varianz sind direkt proportional zu einander.
Auswirkung von "Ausreißern"
Datenreihe | mittlere lineare Abweichung | Varianz | Standardabweichung | wahrer Mittelwert |
(10,10,10,10) | 0 | 0 | 0 | 10 |
(10,10,10,9) | 0,375 | 0,25 | 0,5 | 9,75 |
(10,10,10,8) | 0,75 | 1 | 1 | 9,5 |
(10,10,10,2) "Ausreißer" | 3 | 16 | 4 | 8 |
Standardabweichung einer Vollerhebung berechnen
Standardabweichung einer Vollerhebung berechnen, bei der man den wahren Mittelwert kennt → \(\dfrac{1}{n}\)
Die (empirische) Standardabweichung ist ein Maß dafür, wie weit im Durchschnitt die einzelnen Messwerte vom Erwartungswert entfernt liegen, d.h. wie weit die einzelnen Messwerte um den Erwartungswert streuen. Je kleiner die Standardabweichung ist, um so besser repräsentiert der Erwartungswert die einzelnen Messwerte.
- Betrachten wir einen extremen Fall: Sind alle einzelnen Messwerte gleich, dann ist die Standardabweichung null, weil dann alle Messwerte zu ihrem Erwartungswert gleich sind.
- Die Standardabweichung ist immer größer gleich Null.
\(\eqalign{ & \sigma = \sqrt {{\sigma ^2}} = \sqrt {\dfrac{{{{\left( {{x_1} - \overline x } \right)}^2} + {{\left( {{x_2} - \overline x } \right)}^2} + ...{{\left( {{x_n} - \overline x } \right)}^2}}}{n}} \cr & \sigma = \sqrt {\dfrac{1}{n} \cdot \sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline x } \right)}^2}\,\,} } \cr}\)
\(\sigma = \sqrt {Var\left( X \right)} \)
Korrigierte Standardabweichung einer Stichprobe berechnen
Die Stichprobenstandardabweichung ist umso größer, je kleiner der Stichprobenumfang n ist. Der Graph der Dichtefunktion ist umso breiter und verläuft umso flacher, je kleiner die Stichprobe ist. Die Standardabweichung der Stichprobe entspricht dem Abstand der Wendepunkte vom Graph der Dichtefunktion bis zum Erwartungswert der Stichprobe.
Standardabweichung einer Stichprobe vom Umfang n berechnen, bei der man den wahren Mittelwert nicht kennt → \(\dfrac{1}{{n - 1}}\)
\({s} = \sqrt {\dfrac{1}{{n - 1}} \cdot \sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline x } \right)}^2}\,\,} } \)
Standardabweichung einer Stichprobe vom Umfang n berechnen, bei gegebener absoluter Häufigkeit n1, .., nk → \(\dfrac{1}{{n - 1}}\)
\(s = \sqrt {\dfrac{1}{{n - 1}} \cdot \sum\limits_{i = 1}^k {{n_k} \cdot {{\left( {{x_i} - \overline x } \right)}^2}} } \)
Standardabweichung einer Stichprobe vom Umfang n berechnen, bei gegebener relativer Häufigkeit h1,..., hk → \(\dfrac{1}{{n - 1}}\)
\(s = \sqrt {\dfrac{n}{{n - 1}} \cdot \sum\limits_{i = 1}^k {{h_k} \cdot {{\left( {{x_i} - \overline x } \right)}^2}} } \)
Standardfehler bzw. Stichprobenfehler
Der Standardfehler (SEM = Standard Error of the Mean) ist ein Maß dafür, inwieweit die Standardabweichung einer Stichprobe s von der Standardabweichung der Grundgesamtheit σ abweicht. Wenn die Standardabweichung der Grundgesamtheit σ und die Stichprobengröße n bekannt sind, gilt:
\(SEM = {\sigma _S} = \dfrac{\sigma }{{\sqrt n }}\)
Je größer die Stichprobe, die ja im Nenner steht, umso kleiner der Standardfehler.
Beispiel:
Standardfehler SEM einer kleinen Stichprobe:
\(\eqalign{
& \sigma = 4,5{\text{ml}} \cr
& n = 10 \cr
& SEM = \frac{\sigma }{{\sqrt n }} = \frac{{4,5}}{{\sqrt {10} }} \approx 1,423{\text{ml}} \cr} \)
Standardfehler SEM einer großen Stichprobe:
\(\eqalign{
& \sigma = 4,5{\text{ml}} \cr
& n = 100 \cr
& SEM = \frac{\sigma }{{\sqrt n }} = \frac{{4,5}}{{\sqrt {100} }} = \frac{{4,5}}{{10}} \approx 0,45{\text{ml}} \cr} \)
Wir sehen: Der Standardfehler einer Stichprobe ist umso größer, je kleiner der Stichprobenumfang n ist.
\(n = 10 \to {\sigma _S} = 1,423{\text{ml}} > 0,45{\text{ml = }}{\sigma _s} \leftarrow n = 100\)
Unterschied Standardabweichung und Standardfehler
- Die Standardabweichung ist ein Maß für die durchschnittliche Entfernung aller Messwerte vom arithmetischen Mittelwert. Sie beeinflusst Breite und Höhe vom Graph der Dichtefunktion
- Der Standardfehler ist ein Maß für mittlere Abweichung des Mittelwerts einer Stichprobe zum Mittelwert der realen Grundgesamtheit.