Lineare Funktion
Bei linearen Funktionen kommt x nur in der 1. Potenz vor. Ihr Funktionsgraph ist eine Gerade, wobei k der Anstieg bzw. die Steigung und d der Abschnitt auf der y-Achse ist.
Hier findest du folgende Inhalte
Formeln
Darstellung von Funktionen
Unter einer Funktion versteht man die eindeutige Zuordnung von jedem Element x der Definitionsmenge zu genau einem Element y der Wertemenge. Unter einer reellen Funktion versteht man die Abbildung von reellen Zahlen der Definitionsmenge auf reelle Zahlen der Wertemenge.
\(f:{D_f} \to {W_f}\,\,\,{\text{mit}}\,\,\,x \in {D_f}\,\,\,{\text{und}}\,\,\,y \in {W_f}\)
Es gibt mehrere gängige Schreibweisen für Funktionsgleichungen
\(f:x \to 2{x^3}\)
\(f\left( x \right) = 2{x^3}\)
\(y = 2{x^3}\)
Funktionsgleichung
Unter einer Funktionsgleichung versteht man eine mathematische Vorschrift, die angibt, wie man aus einem gegebenen x-Wert den zugehörigen y-Wert errechnet. Dabei ist y abhängig davon, welchen Wert x man in die Funktionsgleichung einsetzt. Die Funktionsgleichung stellt die Abbildung der Werte aus der Definitionsmenge Df auf die Wertemenge Wf in Form einer Gleichung dar.
\(f:{\Bbb R} \to {\Bbb R};\,\,\,y = f\left( x \right)\)
Daher nennt man
- y die abhängige Variable bzw. den Funktionswert
- x die unabhängige Variable bzw. das Funktionsargument
Typen wichtiger Funktionsgleichungen
Konstante Funktion | \(f\left( x \right) = c\) |
Direkt proportionale Funktion sie sind für d=0 eine Untermenge der linearen Funktionen |
\(f\left( x \right) = k \cdot x\) |
Lineare Funktion | \(f\left( x \right) = k \cdot x + d\) |
Quadratische Funktion (Parabel) | \(f\left( x \right) = a \cdot {x^2} + b \cdot x + c\) |
Indirekt proportionale Funktion (Hyperbel) sie sind für negative n eine Untermenge der Potenzfunktionen |
\(f\left( x \right) = \dfrac{c}{{{x^n}}} = c \cdot {x^{ - n}}\) |
Potenzfunktion | \(f\left( x \right) = c \cdot {x^n}\) |
Wurzelfunktion | \(f\left( x \right) = \root n \of x = {x^{\dfrac{1}{n}}}\) |
Exponentialfunktion | \(\begin{array}{l} f\left( x \right) = c \cdot {a^x}\\ f\left( x \right) = c \cdot {e^x} \end{array}\) |
Logarithmusfunktion | \(f\left( x \right) = {}^a\log x\) |
Periodische Funktion | \(f\left( {x + T} \right) = f\left( x \right)\) |
Polynomfunktion | \(f\left( x \right) = {a_n} \cdot {x^n} + {a_{n - 1}} \cdot {x^{n - 1}} + ... + {a_1} \cdot x + {a_0}\) |
uvm. |
Graph einer Funktion
Jedem Wert auf der x-Achse wird über die Funktion ein Punkt auf der y-Achse zugeordnet. Die Menge aller Punkte einer Funktion f(x) mit den Koordinaten (x|y=f(x)) bilden eine Kurve in der Gaus`schen Ebene, den sogenannten Graphen der Funktion.
\(y = f\left( x \right)\)
Geometrische Darstellung: Trägt man die unabhängige Variable x auf der x-Achse und die abhängige Variable y=f(x) auf der y-Achse auf, erhält man den Graph als eine grafische Darstellung der Funktion in Form einer Kurve.
Wertetabelle einer Funktion
Trägt man in einer 2-spaltigen Tabelle in der 1. Spalte die x-Werte gemäß der Definitionsmenge Df ein und in der 2. Spalte die y=f(x) Werte gemäß der Wertemenge Wf, so erhält man Zahlenpaare, die die Zeilen der Wertetabelle bilden.
x | y=f(x) |
x1 | f(x1) |
x2 | f(x2) |
... | ... |
xi | f(xi) |
Mengendiagramm einer Funktion
Grafische Gegenüberstellung von Definitionsmenge und Wertemenge einer Funktion, wobei die Wertepaare durch Pfeile mit einander verbunden werden
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Polynomfunktionen n-ten Grades
Ein Polynom ist die Summe von mehreren Potenzfunktionen. Der Grad der Polynomfunktion „n“ entspricht der höchsten vorkommenden Potenz von der Variablen x. Alle Polynomfunktionen verlaufen durch den Punkt \(P\left( {0\left| {{a_0}} \right.} \right)\). Der Definitionsbereich von Polynomfunktionen ist nicht eingeschränkt, daher gilt: \(D = {\Bbb R}\). Polynomfunktionen werden auch ganzrationale Funktionen genannt.
\(f\left( x \right) = {a_n} \cdot {x^n} + {a_{n - 1}} \cdot {x^{n - 1}} + ... + {a_2} \cdot {x^2} + {a_1} \cdot x + {a_0}\)
\(f\left( x \right) = \sum\limits_{i = 0}^n {{a_i} \cdot {x^i}} \)
\(f\left( x \right) = c \cdot \left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right) \cdot ... \cdot \left( {x - {x_n}} \right){\text{ wobei }}{{\text{x}}_n}{\text{ die n Nullstellen sind}}\)
wobei:
\(\eqalign{ & {a_n},{a_{n - 1}},...,{a_1},{a_0} \cr & n \in N;\,\,\,\,\,{a_i} \in {\Bbb R};\,\,\,\,\,{a_n} \ne 0 \cr} \) | Koeffizienten |
ai | i-ter Koeffizient |
n | höchste Potenz |
\({a_2} \cdot {x^2}\) | quadratisches Glied |
\({a_1} \cdot x\) | lineares Glied |
\({a_0}\) | konstantes Glied |
Die wichtigsten Polynomfunktionen:
n=0:
konstante Funktion
\(f\left( x \right) = {a_0}\)
- 0 oder bei f(x)== unendlich viele Nullstellen
- 0 Extremstellen
- 0 Wendestellen
- Typischer Graph verläuft parallel zur x-Achse
n=1:
lineare Funktion
\(f\left( x \right) = {a_1} \cdot x + {a_0} = k \cdot x + d\)
- 1 Nullstelle
- 0 Extremstellen
- 0 Wendestellen
- Typischer Graph ist eine Gerade, welche die x und die y-Achse schneidet
n=2:
quadratische Funktion bzw. Parabel
\(f\left( x \right) = {a_2} \cdot {x^2} + {a_1} \cdot x + {a_0} = a \cdot {x^2} + b \cdot x + c\)
- 0, 1 oder 2 Nullstellen
- 1 Extremstelle, bei: \(x = - \dfrac{{{a_1}}}{{2{a_2}}}{\text{ für }}{{\text{a}}_2} \ne 0\)
- 0 Wendestelle
- Typischer Graph ist eine Parabel
Die quadratische Funktion setzt sich aus einem quadratischen, einem linearen und einem konstanten Glied zusammen.
- a > 0 → Graph noch oben offen (U-förmig), d.h. der Scheitelpunkt der Parabel ist ein Tiefpunkt
- a < 0 → Graph nach unten offen, d.h. der Scheitelpunkt der Parabel ist ein Hochpunkt
- Der Faktor b bewirkt eine Schiebung in x und y-Richtung.
- b = 0 → Der Scheitelpunkt der Parabel liegt auf der y-Achse. Wo auf der y-Achse der Scheitelpunkt liegt, hängt dann nur von c ab
- b = 0 und c = 0 → Scheitelpunkt der Parabel liegt im Ursprung vom Koordinatensystem
- Der Faktor c bewirkt ausschließlich eine Verschiebung noch oben (c>0) oder nach unten (c<0)
n=3:
kubische Funktion
\(f(x) = {a_3} \cdot {x^3} + {a_2} \cdot {x^2} + {a_1} \cdot x + {a_0}\)
- 1, 2 oder 3 Nullstellen
- 0 oder 2 Extremstellen
- 1 Wendestelle
- Typischer Graph verläuft s-förmig
n=4:
\(f(x) = {a_4} \cdot {x^4} + {a_3} \cdot {x^3} + {a_2} \cdot {x^2} + {a_1} \cdot x + {a_0}\)
- 0 .. 4 Nullstellen
- 1 oder 3 Extremstellen
- 0 oder 2 Wendestellen
- Typischer Graph verläuft w-förmig
Nullstellen: Maximale Anzahl der Nullstellen = Grad der Funktion.
- Wenn „n“ ungerade ist, dann haben sie mindestens eine Lösung in \({\Bbb R}\)
Extremstellen: Maximale Anzahl der Extremstellen = Grad der Funktion n minus 1
Wendepunkte: Maximale Anzahl der Wendepunkte = Grad der Funktion n minus 2
- \(n \geqslant 3\) und n gerade: 0, 2, 4,.. Wendestellen
- \(n \geqslant 3\) und n ungerade: mindestens 1 Wendestelle
konstantes Glied: Das konstante Glied erhält man immer an der Stelle x=0. Daher kann man es aus einem Graph auf der y-Achse (\(P\left( {0\left| {{a_n}} \right.} \right)\)) direkt ablesen.
Lineare Funktion
Bei linearen Funktionen kommt x nur in der 1. Potenz vor. Ihr Funktionsgraph ist eine Gerade, deren Erscheinungsbild durch die beiden Parameter k und d bestimmt ist. Dabei ist
- y die von x abhängige Variable, sie wird auch als Funktionswert bezeichnet
- k der Anstieg bzw. die Steigung. Die Steigung ist bei einer Geraden natürlich unveränderlich konstant
- x die unabhängige Variable, sie wird auch als das Argument der Funktion bezeichnet
- d der Abschnitt auf der y-Achse. Der Punkt (0|d) ist daher der Schnittpunkt der Funktion f(x) mit der y-Achse, man spricht vom Achsenabschnitt
\(f\left( x \right) =y= kx + d\)
Homogene lineare Funktion
Bei der homogenen linearen Funktion ist d=0, daher verläuft ihr Graph durch den Koordinatenursprung.
\(f\left( x \right) = kx\)
Inhomogene lineare Funktion
Bei der inhomogenen linearen Funktion ist d≠0, daher verläuft der Graph nicht durch den Koordinatenursprung.
\(f\left( x \right) = kx + d\)
Konstante Funktion
Bei der konstanten Funktion ist k=0, daher verläuft der Graph parallel zur x-Achse, im Abstand d. Für k=0 und d=0 entspricht der Graph der Funktion dem Verlauf der x-Achse
\(f\left( x \right) = d\)
1. bzw. 2. Mediane
Die Funktion \(f\left( x \right) = \pm x\) heißt 1. bzw. 2. Mediane, wenn k=1 bzw. -1 und d=0. Ihr Graph verläuft durch den Ursprung und steht im 45° Winkel zur x- und zur y-Achse.
Gleichung einer Geraden, die parallel zur y-Achse verläuft
Es gibt auch Geraden, die nicht der Graph einer linearen Funktion sind. Man spricht nicht von einer Funktion, wenn x=c. Das wäre die Gleichung einer Geraden, die parallel zur y-Achse verläuft oder speziell für x=c=0 wäre es die Gleichung der y-Achse
Steigung k
Die Steigung einer linearen Funktion ist ein Maß dafür, wie stark sich die Funktionswerte y=f(x) ändern, wenn sich die Argumente x ändern. Bei positivem k steigt der Graph der Funktion an, bei negativem k fällt er im Koordinatensystem von links oben nach rechts unten. Andere Bezeichnungen für k sind. Steigungsverhältnis bzw. Differenzenquotient.
Die Steigung k der linearen Funktion ist unabhängig von x, was man wie folgt zeigen kann:
\(\dfrac{{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)}}{{{x_2} - {x_1}}} = \dfrac{{\left( {k \cdot {x_2} + d} \right) - \left( {k \cdot {x_1} + d} \right)}}{{{x_2} - {x_1}}} = k\)
Aus der konstanten Steigung folgert, dass der Graph einer linearen Funktion eine Gerade sein muss.
Achsenabschnitt d
Der Achsenabschnitt d ist der Schnittpunkt der Funktion mit der y-Achse, was man wie folgt zeigen kann:
\(f\left( {x = 0} \right) = k \cdot 0 + d = d\)
Beispiel:
Lineare Funktion mit k=1 und d=0
Beachte:
- Zufolge k=1 ergibt sich die Steigung der Funktion f(x), indem man von einem Ausgangspunkt, der selbst auf der Funktion liegt um 1 Einheit nach rechts und um 1 Einheit nach oben geht.
- Zufolge d=0 liegt der Schnittpunkt der Funktion f(x) mit der y-Achse im Ursprung
Beispiel:
Lineare Funktion mit k=-1 und d=0
Beachte:
- Zufolge k=-1 ergibt sich die Steigung der Funktion f(x), indem man von einem Ausgangspunkt, der selbst auf der Funktion liegt um 1 Einheit nach rechts und um 1 Einheit nach unten geht.
- Zufolge d=0 liegt der Schnittpunkt der Funktion f(x) mit der y-Achse im Ursprung
Beispiel:
Lineare Funktion mit k=1 und d=2;
Beachte:
- Zufolge k=1 ergibt sich die Steigung der Funktion f(x), indem man von einem Ausgangspunkt, der selbst auf der Funktion liegt um 1 Einheit nach rechts und um 1 Einheit nach oben geht.
- Zufolge d=2 liegt der Schnittpunkt der Funktion f(x) mit der y-Achse in \(P\left( {0\left| 2 \right.} \right)\)
Beispiel:
Lineare Funktion mit k=1 und d=-2;
Beachte:
- Zufolge k=1 ergibt sich die Steigung der Funktion f(x), indem man von einem Ausgangspunkt, der selbst auf der Funktion liegt um 1 Einheit nach rechts und um 1 Einheit nach oben geht.
- Zufolge d=-2 liegt der Schnittpunkt der Funktion f(x) mit der y-Achse in \(P\left( {0\left| -2 \right.} \right)\)
Aufgaben
Aufgabe 1131
AHS - 1_131 & Lehrstoff: FA 2.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften linearer Funktionen
Gegeben ist eine lineare Funktion f mit der Gleichung \(f\left( x \right) = 4x - 2\)
Aufgabenstellung
Wählen Sie zwei Argumente x1 und x2 mit x2 = x1 + 1 und zeigen Sie, dass die Differenz f(x2) – f(x1) gleich dem Wert der Steigung k der gegebenen linearen Funktion f ist!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 1119
AHS - 1_119 & Lehrstoff: FA 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parameter einer linearen Funktion
Der Verlauf einer linearen Funktion f mit der Gleichung \(f\left( x \right) = k \cdot x + d\) wird durch ihre Parameter k und d mitbestimmt.
Aufgabenstellung:
Zeichnen Sie den Graphen einer linearen Funktion \(f\left( x \right) = k \cdot x + d\) für deren Parameter k und d die Bedingungen \(k = \dfrac{2}{3};\,\,\,d < 0\) gelten, in das Koordinatensystem ein!
Aufgabe 1510
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graphen und Funktionstypen
Im Folgenden sind sechs Funktionstypen angeführt, wobei die Parameter \(a,b \in {{\Bbb R}^ + }\) sind
A | \(f\left( x \right) = a \cdot {b^x}\) |
B | \(f\left( x \right) = a \cdot {x^{\dfrac{1}{2}}}\) |
C | \(f\left( x \right) = a \cdot \dfrac{1}{{{x^2}}}\) |
D | \(f\left( x \right) = a \cdot {x^2} + b\) |
E | \(f\left( x \right) = a \cdot {x^3}\) |
F | \(f\left( x \right) = a \cdot x + b\) |
Weiters sind die Graphen von vier Funktionen dargestellt.
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
Aufgabenstellung:
Ordnen Sie den vier Graphen 1, 2, 3 und 4 jeweils den entsprechenden Funktionstyp (aus A bis F) zu!
Aufgabe 1255
AHS - 1_255 & Lehrstoff: FA 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lineare Gleichung - lineare Funktion
Eine lineare Funktion y = f (x) kann durch eine Gleichung \(a \cdot x + b \cdot y = 0{\text{ mit }}a,b \in {{\Bbb R}^ + }\)
Aufgabenstellung:
Geben Sie einen Funktionsterm von f an und skizzieren Sie, wie der Graph aussehen könnte!
Aufgabe 1485
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Erwärmung von Wasser
Bei einem Versuch ist eine bestimmte Wassermenge für eine Zeit t auf konstanter Energiestufe in einem Mikrowellengerat zu erwärmen. Die Ausgangstemperatur des Wassers und die Temperatur des Wassers nach 30 Sekunden werden gemessen.
Zeit (in Sekunden) | t=0 | t=30 |
Temperatur (in °C) | 35,6 | 41,3 |
Aufgabenstellung:
Ergänzen Sie die Gleichung der zugehörigen linearen Funktion, die die Temperatur T(t) zum Zeitpunkt t beschreibt!
\(T\left( t \right) = \_\_\_\_\_\_\_\_\_ \cdot t + 35,6\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 1053
AHS - 1_053 & Lehrstoff: AG 2.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fahrenheit
In einigen Ländern wird die Temperatur in °F (Grad Fahrenheit) und nicht wie bei uns in °C (Grad Celsius) angegeben. Die Umrechnung von x °C in y °F erfolgt durch die Gleichung \(y = 1,8 \cdot x + 32\). Dabei gilt: \(0^\circ C \overset{\wedge}{=}32^\circ F\)
Aufgabenstellung:
Ermitteln Sie eine Gleichung, mit deren Hilfe die Temperatur von °F in °C umgerechnet werden kann!
Aufgabe 1263
AHS - 1_263 & Lehrstoff: FA 2.6
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zusammenhang
Gegeben ist eine lineare Funktion f mit der Gleichung \(f\left( x \right) = k \cdot x + d{\text{ mit }}k \in {{\Bbb R}^ + }{\text{ und }}d \in {\Bbb R}\)
Aufgabenstellung
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
f beschreibt immer dann auch einen ____1_____ Zusammenhang, wenn _____2______ gilt.
1 | |
direkt proportionalen | A |
indirekt proportionalen | B |
exponentiellen | C |
2 | |
\(k = - d\) | I |
\(k = \dfrac{1}{d}\) | II |
\(d = 0\) | III |
Aufgabe 1254
AHS - 1_254 & Lehrstoff: FA 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graph einer Funktion zeichnen
Gegeben sind fünf Abbildungen:
- Aussage 1:
- Aussage 2:
- Aussage 3:
- Aussage 4:
- Aussage 5:
Aufgabenstellung
Welche Abbildungen stellen einen Graphen von einer linearen Funktion dar? Kreuzen Sie die zutreffende(n) Abbildung(en) an!
Aufgabe 1240
AHS - 1_240 & Lehrstoff: FA 1.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionsdarstellung einer Formel
Gegeben ist die Formel \(r = \dfrac{{2{s^2}t}}{u}\) für s, t, u > 0
- Aussage 1:
- Aussage 2:
- Aussage 3: