Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Nullphasenwinkel

Nullphasenwinkel

Der Nullphasenwinkel ist ein Maß dafür, wie weit vor- oder nacheilend die Nullstelle einer Schwingung y(t) zum Zeitpunkt t=0 im Vergleich zu einer reinen Sinusschwingung ist.

Hier findest du folgende Inhalte

1
Formeln
    Formeln
    Wissenspfad
    Aufgaben

    Allgemeine Sinusfunktion

    Für den Zeitpunkt t=0 ist die Amplitude einer Sinusfunktion null. Unmittelbar danach nehmen die Funktionswerte zu. Von einer allgemeinen oder phasenverschobenen Sinusfunktion spricht man, wenn die Amplitude einer Sinusfunktion zum Zeitpunkt t=0 ungleich Null ist. Der Vorteil dieser Notation ist, dass man etwa eine Kosinusfunktion als eine um 90° phasenverschobene Sinusfunktion darstellen kann. 

     


    Änderung von Parametern einer allgemeinen Sinusfunktion

    Über Parameter können Form und Lage vom Graph der allgemeinen Sinusfunktion verändert werden.

    \(f\left( x \right) = a \cdot \sin \left( {bx + c} \right) + d\)

    • Der Faktor a bewirkt eine Streckung oder Stauchung der „Höhe“ - der sogenannten Amplitude - der Schwingung
    • Der Faktor b bewirkt eine Änderung der Periodendauer - dem Kehrwert der Frequenz - also einer Streckung oder Stauchung in Richtung der x-Achse
      Der Faktor b entspricht der Anzahl der Perioden im Intervall \(\left[ {0;\,\,2\pi } \right]\). Verdoppelt man den Faktor, so liegen doppelt so viele Perioden in diesem Intervall.
      \(b = \dfrac{{2 \cdot \pi }}{T}\)
    • Der Summand c im Argument bewirkt eine Phasenverschiebung (Zeitpunkt des „Null-Durchgangs) in Richtung der x-Achse (=Parallelverschiebung in Richtung der x-Achse).
      • Ist c positiv, so wird die betrachtete Funktion nach links verschoben
      • Ist c negativ, so wird die betrachtete Funktion nach rechts verschoben
    • Der Summand d bewirkt eine Parallelverschiebung der Schwingung in Richtung der y-Achse. Die Schwingung erfolgt dann nicht mehr symmetrisch zur x-Achse, sondern symmetrisch zur Geraden y=d

    Statt der bei Winkelfunktionen vertrauten Schreibweise sin(x) verwenden wir die in der Elektrotechnik übliche Schreibweise \(\sin \left( {\omega \cdot t} \right)\) da dadurch die Zeitabhängigkeit der Amplitude (=des Funktionswerts) klar zum Ausdruck gebracht wird.

    \(\eqalign{ & y\left( t \right) = A_0 \cdot \sin \left( {\omega \cdot t + \varphi } \right) \cr & T = \dfrac{{2\pi }}{\omega } = \dfrac{1}{f} \cr & {t_0} = - \dfrac{\varphi }{\omega } \cr & \omega = 2 \cdot \pi \cdot f = \dfrac{{2 \cdot \pi }}{T} \cr & f = \dfrac{1}{T} \cr & f\left( x \right) = f\left( {x + T} \right) \cr}\)


    Illustration einer phasenverschobenen Sinusfunktion

    Funktion f f(x) = 2sin(2x - 10) Strecke g Strecke g: Strecke D, E Punkt A Punkt A: Schnittpunkt von f, xAchse mit Startwert (-1.28, 0) Punkt A Punkt A: Schnittpunkt von f, xAchse mit Startwert (-1.28, 0) Punkt F Punkt F: Schnittpunkt von xAchse, yAchse Punkt F Punkt F: Schnittpunkt von xAchse, yAchse T =\frac{λ}{c} text1 = “T =\frac{λ}{c}” T =\frac{λ}{c} text1 = “T =\frac{λ}{c}” T =\frac{λ}{c} text1 = “T =\frac{λ}{c}” T =\frac{λ}{c} text1 = “T =\frac{λ}{c}” T =\frac{λ}{c} text1 = “T =\frac{λ}{c}” A_0 text2 = “A_0” A_0 text2 = “A_0” -A_0 text3 = “-A_0” -A_0 text3 = “-A_0” y=A_0 sin (\omega t + φ) text4 = “y=A_0 sin (\omega t + φ)” y=A_0 sin (\omega t + φ) text4 = “y=A_0 sin (\omega t + φ)” y=A_0 sin (\omega t + φ) text4 = “y=A_0 sin (\omega t + φ)” y=A_0 sin (\omega t + φ) text4 = “y=A_0 sin (\omega t + φ)” y=A_0 sin (\omega t + φ) text4 = “y=A_0 sin (\omega t + φ)” y=A_0 sin (\omega t + φ) text4 = “y=A_0 sin (\omega t + φ)” y=A_0 sin (\omega t + φ) text4 = “y=A_0 sin (\omega t + φ)” y=A_0 sin (\omega t + φ) text4 = “y=A_0 sin (\omega t + φ)” y=A_0 sin (\omega t + φ) text4 = “y=A_0 sin (\omega t + φ)” y=A_0 sin (\omega t + φ) text4 = “y=A_0 sin (\omega t + φ)” y=A_0 sin (\omega t + φ) text4 = “y=A_0 sin (\omega t + φ)” y=A_0 sin (\omega t + φ) text4 = “y=A_0 sin (\omega t + φ)” y=A_0 sin (\omega t + φ) text4 = “y=A_0 sin (\omega t + φ)” ${\varphi }$ text5 = “${\varphi }$” $\lambda = \frac{c}{f}$ Text1 = “$\lambda = \frac{c}{f}$” $\lambda = \frac{c}{f}$ Text1 = “$\lambda = \frac{c}{f}$” $\lambda = \frac{c}{f}$ Text1 = “$\lambda = \frac{c}{f}$” $\lambda = \frac{c}{f}$ Text1 = “$\lambda = \frac{c}{f}$” $\lambda = \frac{c}{f}$ Text1 = “$\lambda = \frac{c}{f}$” $\begin{array}{l} \omega t\\ t\\ s \end{array}$ Text2 = “$\begin{array}{l} \omega t\\ t\\ s \end{array}$” $\begin{array}{l} \omega t\\ t\\ s \end{array}$ Text2 = “$\begin{array}{l} \omega t\\ t\\ s \end{array}$” $\begin{array}{l} \omega t\\ t\\ s \end{array}$ Text2 = “$\begin{array}{l} \omega t\\ t\\ s \end{array}$” $\begin{array}{l} \omega t\\ t\\ s \end{array}$ Text2 = “$\begin{array}{l} \omega t\\ t\\ s \end{array}$” A Text3 = “A”

    A Amplitude (=maximale Auslenkung)
    \(\omega \) Kreisfrequenz (Maß dafür, wie schnell die Schwingung abläuft)
    \( \varphi\) Nullphasenwinkel (bei einer "allgemeinen" Schwingung ist die Amplitude zum Zeitpunkt t=0 größer oder kleiner - auf jeden Fall ungleich - als Null. 
    T Schwingungsdauer (Periodendauer)
    f Frequenz

     


    Nullphasenwinkel

    Der Nullphasenwinkel ist ein Maß dafür, wie weit vor- oder nacheilend die Nullstelle einer Schwingung y(t) zum Zeitpunkt t=0 im Vergleich zu einer reinen Sinusschwingung ist.


    Phasenverschiebungswinkel

    Der Phasenverschiebungswinkel ist ein Maß dafür, wie weit vor- oder nacheilend die jeweilige Nullstelle zweier beliebiger Schwingungen ist. Ein Beispiel für die physikalische Bedeutung ist der Phasenverschiebungswinkel zwischen Strom und Spannung etwa bei Drehstromsystemen als Maß für die unerwünschte Blindleistung Q gemäß \(Q = \sqrt 3 \cdot \overrightarrow {{U_L}} \cdot \overrightarrow {{I_L}} \cdot \sin \varphi \)

    • Addiert man zum Argument einer trigonometrischen Funktion einen Phasenverschiebungswinkel mit einem positiven Wert , so wird der Graph der Funktion nach links verschoben. 
    • Addiert man zum Argument einer trigonometrischen Funktion einen Phasenverschiebungswinkel mit einem negativen Wert , so wird der Graph der Funktion nach rechts verschoben.

    Illustration einer um +90° phasenverschobenen Sinusfunktion die somit zur Kosinusfunktion wird
    • In rot die Sinusfunktion
    • In grün die um +90° und somit nach links phasenverschobene Sinusfunktion, die somit in Phase zur reinen Kosinusfunktion (blau) wird.
    • In blau die Kosinusfunktion. Wir haben deren Amplitude auf 75% reduziert, damit der grüne und der blaue Graph nicht deckungsgleich sind

    Funktion f f(x) = sin(x) Funktion g g(x) = 0.75cos(x) Funktion h h(x) = sin(x + 1.57) Vektor u Vektor u: Vektor(F, E) Vektor u Vektor u: Vektor(F, E) sin(x) Text1 = “sin(x)” 0.75 \cdot cos(x) Text2 = “0.75 \cdot cos(x)” 0.75 \cdot cos(x) Text2 = “0.75 \cdot cos(x)” 0.75 \cdot cos(x) Text2 = “0.75 \cdot cos(x)” 0.75 \cdot cos(x) Text2 = “0.75 \cdot cos(x)” 0.75 \cdot cos(x) Text2 = “0.75 \cdot cos(x)” 0.75 \cdot cos(x) Text2 = “0.75 \cdot cos(x)” 0.75 \cdot cos(x) Text2 = “0.75 \cdot cos(x)” 0.75 \cdot cos(x) Text2 = “0.75 \cdot cos(x)” 0.75 \cdot cos(x) Text2 = “0.75 \cdot cos(x)” 0.75 \cdot cos(x) Text2 = “0.75 \cdot cos(x)” 0.75 \cdot cos(x) Text2 = “0.75 \cdot cos(x)” $ \sin \left( {x + \frac{\pi }{2}} \right)$ Text3 = “$ \sin \left( {x + \frac{\pi }{2}} \right)$” $ \sin \left( {x + \frac{\pi }{2}} \right)$ Text3 = “$ \sin \left( {x + \frac{\pi }{2}} \right)$” $ \sin \left( {x + \frac{\pi }{2}} \right)$ Text3 = “$ \sin \left( {x + \frac{\pi }{2}} \right)$” $ \sin \left( {x + \frac{\pi }{2}} \right)$ Text3 = “$ \sin \left( {x + \frac{\pi }{2}} \right)$” $ \sin \left( {x + \frac{\pi }{2}} \right)$ Text3 = “$ \sin \left( {x + \frac{\pi }{2}} \right)$” $ \sin \left( {x + \frac{\pi }{2}} \right)$ Text3 = “$ \sin \left( {x + \frac{\pi }{2}} \right)$” $ \sin \left( {x + \frac{\pi }{2}} \right)$ Text3 = “$ \sin \left( {x + \frac{\pi }{2}} \right)$” $ \sin \left( {x + \frac{\pi }{2}} \right)$ Text3 = “$ \sin \left( {x + \frac{\pi }{2}} \right)$” $ \sin \left( {x + \frac{\pi }{2}} \right)$ Text3 = “$ \sin \left( {x + \frac{\pi }{2}} \right)$” $ \sin \left( {x + \frac{\pi }{2}} \right)$ Text3 = “$ \sin \left( {x + \frac{\pi }{2}} \right)$”

    Allgemeine Sinusfunktion
    Amplitude
    Kreisfrequenz
    Nullphasenwinkel
    Schwingungsdauer
    Periodendauer
    Frequenz f
    Phasenverschiebungswinkel
    Parameter einer allgemeinen Sinusfunktion
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    Bild
    Illustration Buch mit Cocktail 1050 x 450
    Startseite

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Laptop
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH