Periodendauer
Hier findest du folgende Inhalte
Formeln
Frequenz im Wechselstromkreis
Die in Herz gemessene Frequenz gibt an, wie viele Perioden eine Wechselgröße in einer Sekunde durchläuft. Eine Periode entspricht einer positiven plus einer negativen Halbwelle einer sinusförmigen Schwingung. Die Zeit, die zum Durchlaufen einer Periode benötigt wird, nennt man die Periodendauer. In Nordamerika (Kanada, USA, Mexiko) und in wenigen andern Ländern wie Brasilien beträgt die Netzfrequenz 60Hz. Im Großteil der Welt beträgt die Netzfrequenz 50Hz.
\(f = \dfrac{1}{T}\)
f | Frequenz in Hz |
T | Schwingungs- oder Periodendauer in Sekunden |
\(\omega\) | Kreisfrequenz in 1/s |
Praktische Bedeutung der Netzfrequenz von 50 Hz
Elektrische Energie wird vorwiegend mittels Synchrongeneratoren - alternativ auch mittels Wechselrichter aus Gleichstrom etwa von Photovoltaikanlagen - erzeugt. Die Netzfrequenz beträgt in den 3 europäischen Verbundnetzen UCTE, NORDEL und IPS/UPS einheitlich 50 Hz.
Elektrische Leistung muss immer im selben Augenblick wo sie verbraucht wird auch erzeugt werden. Ist das nicht der Fall, hat das Auswirkungen auf die Netzfrequenz, was sich in der Praxis sogar in der Genauigkeit der Uhrzeit bei netzsynchronen Uhren mit bis zu 6 Minuten Anzeigeungenauigkeit niederschlagen kann.
- Übersteigt der Verbrauch kurzzeitig die Erzeugung, so sinkt die Netzfrequenz. Die fehlende Energie stammt aus der rotierenden Masse aller beteiligten Synchrongeneratoren, die so Rotationsenergie verlieren und demzufolge langsamer drehen, was wiederum zu einem Absinken der Netzfrequenz führt. Eine lokale Abweichung in Form von einem Totband von +/- 20 mHz ist zulässig, ohne dass Regelleistung eingesetzt wird.
- Im normalen Netzbetrieb darf die Frequenz um +/- 200 mHz vom Sollwert 50 Hz abweichen. Derartige Abweichungen (49,8 bzw. 50,2 Hz) werden durch den Einsatz der Primär-, Sekundär- und Tertiärregelung ausgeregelt.
- Übersteigt die Abweichung +/- 800 mHz, entsprechend 49,2 bzw. 50,8 Hz auch nur kurzfristig, werden Verbraucher oder Erzeuger abgeworfen, d.h. von Netz getrennt.
- Die größte Gefahr für ein Übertragungsnetz geht aber durch den ungeplanten Ausfall von großen Kraftwerken aus, denn sinkt die Frequenz auf unter 47,7 Hz trennen sich die Kraftwerke automatisch von Netz ab. Die Folge davon ist der Zerfall des Verbundnetzes in Inselnetze bzw. der Netzzusammenbruch.
Kreisfrequenz im Wechselstromkreis
Die Kreisfrequenz ist das 2π -fache der Frequenz. Die Kreisfrequenz \(\omega\) entspricht dem in 1 Sekunde vom einem Zeiger der Länge 1 überstrichenem Winkel. Da die Kreisfrequenz das Produkt von \(2 \cdot \pi\) und der Frequenz f ist, wird bei einer Frequenz von 50 Hz der Kreis vom zugehörigen Zeiger 50 mal pro Sekunde umlaufen.
\(\omega = 2 \cdot \pi \cdot f = \dfrac{{2 \cdot \pi }}{T}\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Allgemeine Sinusfunktion
Für den Zeitpunkt t=0 ist die Amplitude einer Sinusfunktion null. Unmittelbar danach nehmen die Funktionswerte zu. Von einer allgemeinen oder phasenverschobenen Sinusfunktion spricht man, wenn die Amplitude einer Sinusfunktion zum Zeitpunkt t=0 ungleich Null ist. Der Vorteil dieser Notation ist, dass man etwa eine Kosinusfunktion als eine um 90° phasenverschobene Sinusfunktion darstellen kann.
Änderung von Parametern einer allgemeinen Sinusfunktion
Über Parameter können Form und Lage vom Graph der allgemeinen Sinusfunktion verändert werden.
\(f\left( x \right) = a \cdot \sin \left( {bx + c} \right) + d\)
- Der Faktor a bewirkt eine Streckung oder Stauchung der „Höhe“ - der sogenannten Amplitude - der Schwingung
- Der Faktor b bewirkt eine Änderung der Periodendauer - dem Kehrwert der Frequenz - also einer Streckung oder Stauchung in Richtung der x-Achse
Der Faktor b entspricht der Anzahl der Perioden im Intervall \(\left[ {0;\,\,2\pi } \right]\). Verdoppelt man den Faktor, so liegen doppelt so viele Perioden in diesem Intervall.
\(b = \dfrac{{2 \cdot \pi }}{T}\) - Der Summand c im Argument bewirkt eine Phasenverschiebung (Zeitpunkt des „Null-Durchgangs) in Richtung der x-Achse (=Parallelverschiebung in Richtung der x-Achse).
- Ist c positiv, so wird die betrachtete Funktion nach links verschoben
- Ist c negativ, so wird die betrachtete Funktion nach rechts verschoben
- Der Summand d bewirkt eine Parallelverschiebung der Schwingung in Richtung der y-Achse. Die Schwingung erfolgt dann nicht mehr symmetrisch zur x-Achse, sondern symmetrisch zur Geraden y=d
Statt der bei Winkelfunktionen vertrauten Schreibweise sin(x) verwenden wir die in der Elektrotechnik übliche Schreibweise \(\sin \left( {\omega \cdot t} \right)\) da dadurch die Zeitabhängigkeit der Amplitude (=des Funktionswerts) klar zum Ausdruck gebracht wird.
\(\eqalign{ & y\left( t \right) = A_0 \cdot \sin \left( {\omega \cdot t + \varphi } \right) \cr & T = \dfrac{{2\pi }}{\omega } = \dfrac{1}{f} \cr & {t_0} = - \dfrac{\varphi }{\omega } \cr & \omega = 2 \cdot \pi \cdot f = \dfrac{{2 \cdot \pi }}{T} \cr & f = \dfrac{1}{T} \cr & f\left( x \right) = f\left( {x + T} \right) \cr}\)
Illustration einer phasenverschobenen Sinusfunktion
A | Amplitude (=maximale Auslenkung) |
\(\omega \) | Kreisfrequenz (Maß dafür, wie schnell die Schwingung abläuft) |
\( \varphi\) | Nullphasenwinkel (bei einer "allgemeinen" Schwingung ist die Amplitude zum Zeitpunkt t=0 größer oder kleiner - auf jeden Fall ungleich - als Null. |
T | Schwingungsdauer (Periodendauer) |
f | Frequenz |
Nullphasenwinkel
Der Nullphasenwinkel ist ein Maß dafür, wie weit vor- oder nacheilend die Nullstelle einer Schwingung y(t) zum Zeitpunkt t=0 im Vergleich zu einer reinen Sinusschwingung ist.
Phasenverschiebungswinkel
Der Phasenverschiebungswinkel ist ein Maß dafür, wie weit vor- oder nacheilend die jeweilige Nullstelle zweier beliebiger Schwingungen ist. Ein Beispiel für die physikalische Bedeutung ist der Phasenverschiebungswinkel zwischen Strom und Spannung etwa bei Drehstromsystemen als Maß für die unerwünschte Blindleistung Q gemäß \(Q = \sqrt 3 \cdot \overrightarrow {{U_L}} \cdot \overrightarrow {{I_L}} \cdot \sin \varphi \)
- Addiert man zum Argument einer trigonometrischen Funktion einen Phasenverschiebungswinkel mit einem positiven Wert , so wird der Graph der Funktion nach links verschoben.
- Addiert man zum Argument einer trigonometrischen Funktion einen Phasenverschiebungswinkel mit einem negativen Wert , so wird der Graph der Funktion nach rechts verschoben.
Illustration einer um +90° phasenverschobenen Sinusfunktion die somit zur Kosinusfunktion wird
- In rot die Sinusfunktion
- In grün die um +90° und somit nach links phasenverschobene Sinusfunktion, die somit in Phase zur reinen Kosinusfunktion (blau) wird.
- In blau die Kosinusfunktion. Wir haben deren Amplitude auf 75% reduziert, damit der grüne und der blaue Graph nicht deckungsgleich sind
Periodische Funktion
Eine zeitlich veränderliche Funktion heißt periodisch mit der Periodendauer T, wenn die Funktion bei Verschiebung um T in sich selbst übergeführt wird, d.h. deckungsgleich ist. Eine Schwingung umfasst eine positive und einer negative Halbwelle und dauert eine Periode T lang. Die Zeit T wird als die Periode bzw. als die Schwingdauer des Systems bezeichnet
\(x\left( {t + T} \right) = x\left( t \right)\)
Frequenz
Die Frequenz ist ein Maß für die „Häufigkeit“ der Wiederholungen einer Schwingung pro Zeiteinheit. Ihre Einheit ist daher die Anzahl der Schwingungen pro Sekunde und wird in Hertz (Hz) gemessen.
\(f = \dfrac{1}{T}\)
Periodendauer
Eine Funktion heißt periodisch mit der Periodendauer T, wenn die Funktion bei Verschiebung um T in sich selbst übergeführt wird, d.h. deckungsgleich ist.
\(f\left( {x + T} \right) = f\left( x \right)\)
Bei einer Schwingung vom Typ \(f\left( t \right) = {A_0} \cdot \sin \left( {\omega \cdot t + \varphi } \right)\)gibt
- A0 die Höhe der Amplitude an
- \(\omega \) die Kreisfrequenz, gemessen in der Anzahl der vollen Schwingungen in einem Intervall der Länge \(2 \cdot \pi \)
- \(\varphi\) den Phasenverschiebungswinkel , als den Winkel an um den der Nulldurchgang der Schwingung gegenüber t=0 verschoben ist.
Ein Anschauungsbeispiel aus der Elektrotechnik:
In der Elektrotechnik beträgt die Periodendauer bei in Europa gebräuchlichem 50 Hz Wechsel- oder Drehstrom 20 msec (1sec dividiert durch 50 Hz). Eine Halbperiode, das ist die Zeit von einem Nulldurchgang (=Vorzeichenwechsel) zum nächsten Nulldurchgang beträgt daher 10 msec (20msec : 2 Halbwellen). D.h. man muss maximal 10 msec warten, bis die betrachtete elektrische Größe für kurze Zeit zu Null wird.
Wellenlänge
Als Wellenlänge bezeichnet man bei einer wellenförmigen Ausbreitung den kleinsten Abstand zweier Punkte gleicher Phase. Die Wellenlänge errechnet sich indem man die Ausbreitungsgeschwindigkeit c im jeweiligen Medium durch die Frequenz dividiert. Bei zweidimensionaler Ausbreitung spricht man von Schwingungen und deren Periodendauern. Bei dreidimensionaler Ausbreitung spricht man von Wellen (z.B.: Schall, div. Felder) und von deren Wellenlänge.
\(\lambda = \dfrac{c}{f}\)
Beispiele für Ausbreitungsgeschwindigkeiten:
- Für Schallwellen: c = 343 m/s
- Für elektromagnetische Wellen: c = 299 792 458 m/s
Zusammenhang zwischen Periodendauer, Frequenz und Wellenlänge
Die Periodendauer T entspricht der Kehrwert der Frequenz, bzw. der Quotient aus Wellenlänge und Ausbreitungsgeschwindigkeit im jeweiligen Medium.
\(T = \dfrac{1}{f} = \dfrac{1}{{\dfrac{c}{\lambda }}} = \dfrac{\lambda }{c}\)
Schwingung
Eine Schwingung umfasst eine positive und einer negative Halbwelle und dauert eine Periodendauer T lang. Bei zweidimensionaler Ausbreitung spricht man von Schwingungen und deren Periodendauer. Bei dreidimensionaler Ausbreitung spricht man von Wellen (z.B.: Schall, div. Felder) und von deren Wellenlänge.
\(T = \dfrac{1}{f}\)
Harmonische Schwingung
Harmonische Schwingungen sind ein Sonderfall der periodischen Schwingung, da sie durch Sinus- bzw. Kosinusfunktionen vollständig beschrieben werden können. Man bezeichnet die zeitliche Änderung des horizontalen bzw. des vertikalen Abstands eines Punktes P auf einer Kreisbahn als harmonische Schwingung. Die Darstellung des Punktes über seinen Ortsvektor wird als Vektor- oder Zeigerdiagramm bezeichnet.
- Die zeitliche Änderung des horizontalen Abstands vom rotierenden Punkt P von der y-Achse erzeugt eine reine Kosinusschwingung.
- Die zeitliche Änderung des vertikalen Abstands vom rotierenden Punkt P von der x-Achse erzeugt eine reine Sinusschwingung
Die Funktion u(t) beschreibt einen Schwingungsvorgang, wie er bei mechanischen oder elektrischen Schwingkreisen vorkommt.
\(\eqalign{ & u\left( t \right) = U \cdot \cos \left( {wt + \varphi } \right) \cr & u\left( t \right) = a \cdot \cos \left( {\omega t} \right) + b \cdot \sin \left( {\omega t} \right) \cr & u\left( t \right) = U \cdot {e^{\left( {\omega t + \varphi } \right)}} \cr}\)
U | die Amplitude der Schwingung (deren Maximalauslenkung) |
\(\omega\) | die Kreisfrequenz |
Dabei gilt:
\(\eqalign{ & \omega = 2\pi f = \dfrac{{2\pi }}{T} \cr & f = \dfrac{1}{T} \cr}\)
T | die Schwingungsdauer |
\(\varphi\) | der Nullphasenwinkel, also der Winkel zum Zeitpunkt t=0 |
Änderung von Parametern einer harmonischen Schwingung
Über Parameter kann die Form der Schwingung verändert werden.
\(f\left( x \right) = a \cdot \sin \left( {bx + c} \right) + d\)
- Der Faktor a bewirkt eine Streckung oder Stauchung der „Höhe“ - der sogenannten Amplitude - der Schwingung
- Der Faktor b bewirkt eine Änderung der Periodendauer - dem Kehrwert der Frequenz - also einer Streckung oder Stauchung in Richtung der x-Achse
Der Faktor b entspricht der Anzahl der Perioden im Intervall \(\left[ {0;\,\,2\pi } \right]\). Verdoppelt man den Faktor, so liegen doppelt so viele Perioden in diesem Intervall.
\(b = \dfrac{{2 \cdot \pi }}{T}\) - Der Summand c im Argument bewirkt eine Phasenverschiebung (Zeitpunkt des „Null-Durchgangs) in Richtung der x-Achse (=Parallelverschiebung in Richtung der x-Achse).
- Ist c positiv, so wird die betrachtete Funktion nach links verschoben
- Ist c negativ, so wird die betrachtete Funktion nach rechts verschoben
- Der Summand d bewirkt eine Parallelverschiebung der Schwingung in Richtung der y-Achse. Die Schwingung erfolgt dann nicht mehr symmetrisch zur x-Achse, sondern symmetrisch zur Geraden y=d
Illustration
- In rot die Sinusfunktion.
- In grün die um +90° und somit nach links phasenverschobene Sinusfunktion, die somit in Phase zur reinen Kosinusfunktion (blau) wird.
- In blau die Kosinusfunktion. Wir haben deren Amplitude auf 75% reduziert, damit der grüne und der blaue Graph nicht deckungsgleich sind.
Phasenverschiebung c zwischen Sinus und Kosinus
Anmerkung: In der Technik bevorzugt man die Sinus Darstellung gegenüber der Kosinus Darstellung. Dies ist immer möglich, da man durch Berücksichtigung einer Phasenverschiebung c die beiden Winkelfunktionen in einander umrechnen kann gemäß
- \(\sin \left( x \right) = \cos \left( {x + \dfrac{{3\pi }}{2}} \right) = \cos \left( {x - \dfrac{\pi }{2}} \right)\)
- \(\cos \left( x \right) = \sin \left( {x + \dfrac{\pi }{2}} \right) = \sin \left( {x - \dfrac{{3\pi }}{2}} \right)\)
Aufgaben
Aufgabe 1283
AHS - 1_283 & Lehrstoff: FA 6.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Atemzyklus
Der Luftstrom beim Ein- und Ausatmen einer Person im Ruhezustand ändert sich in Abhängigkeit von der Zeit nach einer Funktion f. Zum Zeitpunkt t = 0 beginnt ein Atemzyklus. f ( t) ist die bewegte Luftmenge in Litern pro Sekunde zum Zeitpunkt t in Sekunden und wird durch die Gleichung \(f\left( t \right) = 0,5 \cdot \sin \left( {0,4 \cdot \pi \cdot t} \right)\) festgelegt.
(Datenquelle: Timischl, W. (1995). Biomathematik: Eine Einführung für Biologen und Mediziner. 2. Auflage. Wien u. a.: Springer.)
Aufgabenstellung
Berechnen Sie die Dauer eines gesamten Atemzyklus!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1338
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinusfunktion
Im untenstehenden Diagramm sind die Graphen zweier Funktionen f und g dargestellt.
Die Funktion f hat die Funktionsgleichung \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right)\) mit den reellen Parametern a und b. Wenn diese Parameter in entsprechender Weise verändert werden, erhält man die Funktion g.
Aufgabenstellung:
Wie müssen die Parameter a und b verändert werden, um aus f die Funktion g zu erhalten? Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Um den Graphen von g zu erhalten, muss a ___1___ und b ___2___ .
1 | |
verdoppelt werden | A |
halbiert werden | B |
gleich bleiben | C |
2 | |
verdoppelt werden | I |
halbiert werden | II |
gleich bleiben | III |
Aufgabe 6017
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Eigenschaften einer Sinusfunktion
Gegeben ist die in \({\Bbb R}\) definierte Funktion \(f:x \mapsto \sin \left( {2x} \right)\).
1. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20
Geben Sie die Amplitude der Funktion f an.
2. Teilaufgabe a.2) 1 BE - Bearbeitungszeit: 2:20
Geben Sie die Periode der Funktion f an.
3. Teilaufgabe a.3) 1 BE - Bearbeitungszeit: 2:20
Geben Sie die Wertemenge der Funktion f an.
Aufgabe 1625
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 12. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinusfunktion
Für \(a,b \in {{\Bbb R}^ + }\) sei die Funktion \(f:{\Bbb R} \to {\Bbb R}\) mit \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right)\) für \(x \in {\Bbb R}\) gegeben. Die beiden nachstehenden Eigenschaften der Funktion f sind bekannt:
- Die (kleinste) Periode der Funktion f ist π.
- Die Differenz zwischen dem größten und dem kleinsten Funktionswert von f beträgt 6.
Aufgabenstellung
Geben Sie a und b an!
- a =
- b =
Aufgabe 1601
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parameter einer Sinusfunktion
Gegeben ist der Graph einer Funktion f mit \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right){\text{ mit }}a,b \in {{\Bbb R}^ + }\)
Aufgabenstellung:
Aufgabenstellung: Geben Sie die für den abgebildeten Graphen passenden Parameterwerte a und b an!
a=
b=
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1577
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. September 2017 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Periodizität
Gegeben ist eine reelle Funktion f mit der Funktionsgleichung \(f\left( x \right) = 3 \cdot \sin \left( {b \cdot x} \right){\text{ mit }}b \in {\Bbb R}\)
- Aussage 1: \(\dfrac{b}{2}\)
- Aussage 2: \(b\)
- Aussage 3: \(\dfrac{b}{3}\)
- Aussage 4: \(\dfrac{\pi }{b}\)
- Aussage 5: \(\dfrac{{2\pi }}{b}\)
- Aussage 6: \(\dfrac{\pi }{3}\)
Aufgabenstellung:
Einer der obenstehend angegebenen Werte gibt die (kleinste) Periodenlange der Funktion f an. Kreuzen Sie den zutreffenden Wert an!
Aufgabe 4202
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Baumhaus - Aufgabe A_116
Teil c
Ein Baumhaus wird mit gewellten Kunststoffplatten überdacht.
Dem Querschnitt liegt der Graph der Funktion f mit f(x) = cos(x) zugrunde. Dieser ist in der nachstehenden Abbildung dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie in der obigen Abbildung die fehlende Zahl in das dafür vorgesehene Kästchen ein.
[1 Punkt]
In der nachstehenden Abbildung ist ein Winkel α im Einheitskreis dargestellt.
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie im obigen Einheitskreis denjenigen Winkel β ein, für den gilt:
\(\sin \left( \beta \right) = \sin \left( \alpha \right){\text{ mit }}\beta \ne \alpha {\text{ und 0°}} \leqslant \beta \leqslant {\text{360° }}\)
[1 Punkt]
Aufgabe 1745
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinusfunktion
Gegeben ist eine Funktion \(f:{\Bbb R} \to {\Bbb R}{\text{ mit }}f\left( x \right) = a \cdot \sin \left( {\dfrac{{\pi \cdot x}}{b}} \right){\text{ mit }}a,b \in {R^ + }\)
Aufgabenstellung
Ergänzen Sie in der nachstehenden Abbildung a und b auf der jeweils entsprechenden Achse so, dass der abgebildete Graph dem Graphen der Funktion f entspricht. [0 / 1 Punkt]
Aufgabe 1284
AHS - 1_284 & Lehrstoff: FA 6.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Periodizität
Die nachstehende Abbildung zeigt die Graphen f1, f2 und f3 von Funktionen der Form \(f\left( x \right) = \sin \left( {b \cdot x} \right)\)
\({f_1} = \sin \left( x \right);\) \({f_2} = \sin \left( {2x} \right);\) \({f_3} = \sin \left( {\dfrac{x}{2}} \right)\)
Aufgabenstellung:
Bestimmen Sie jeweils die der Funktion entsprechende primitive (kleinste) Periode p!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1506
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Periodische Funktion
Gegeben ist die periodische Funktion f mit der Funktionsgleichung \(f\left( x \right) = \sin \left( x \right)\)
Aufgabenstellung:
Geben Sie die kleinste Zahl a > 0 (Maßzahl für den Winkel in Radiant) so an, dass für alle \(x \in {\Bbb R}\) die Gleichung \(f\left( {x + a} \right) = f\left( x \right)\) gilt!
Aufgabe 1530
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winkelfunktionen
Gegeben sind die Funktionen f und g mit \(f(x) = - \sin (x)\) bzw. \(g(x) = \cos (x)\).
Aufgabenstellung:
Geben Sie an, um welchen Wert \(b \in [0;2\pi ]\) in rad der Graph von f verschoben werden muss, um den Graphen von g zu erhalten, sodass \(-sin\left( {x + b} \right) = cos\left( x \right)\) gilt!
Aufgabe 4343
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Blutdruck - Aufgabe B_448
Teil b
Die zeitliche Entwicklung des sogenannten systolischen Blutdrucks einer Testperson wird durch eine Funktion f modelliert (siehe nachstehende Abbildung).
Die Funktion f wird beschrieben durch:
\(f\left( t \right) = a \cdot \sin \left( {\dfrac{\pi }{{12}} \cdot t} \right) + 135\)
t |
Zeit in h |
f(t) | systolischer Blutdruck zur Zeit t in Millimeter Quecksilbersäule (mmHg) |
a | Parameter |
1. Teilaufgabe - Bearbeitungszeit 05:40
Tragen Sie in der obigen Abbildung die fehlende Zeitangabe in das dafür vorgesehene Kästchen ein.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 05:40
Bestimmen Sie den Parameter a.
[1 Punkt]
Der Graph der Funktion f1 in der obigen Abbildung entsteht durch vertikale Verschiebung des Graphen von f.
3. Teilaufgabe - Bearbeitungszeit 05:40
Erstellen Sie ausgehend von f eine Funktionsgleichung für f1.
[1 Punkt]