Rechenoperationen mit komplexen Zahlen
Auch im Bereich der komplexen Zahlen gibt es die aus dem Bereich der reellen Zahlen vertrauten Rechenoperationen, wie Punkt und Strichrechnung,...
Hier findest du folgende Inhalte
Formeln
Rechenoperationen mit komplexen Zahlen
In Teilbereichen der Physik und der Technik, etwa bei der Rechnung mit Wechsel- oder Drehströmen in der Elektrotechnik, bedient man sich der Rechenoperationen mit komplexen Zahlen. Das ist zunächst verwunderlich, da es in der klassischen Physik eigentlich nur reelle aber keine imaginären Größen gibt. Das Resultat jeder Rechenoperation mit komplexen Zahlen ist wieder eine komplexe Zahl, doch deren Real- und deren Imaginärteil sind jeweils reelle Größen, die eine physikalische Bedeutung haben können.
Ein Beispiel aus der Elektrotechnik: Multipliziert man etwa eine zeitabhängige Stromstärke I mit einer phasenverschobenen Spannung U so erhält man die (komplexe) Scheinleistung S. Der Realteil von S ist die Wirkleistung P und der Imaginärteil von S ist die Blindleistung Q, beides sind reale physikalische Größen mit reellem Wert.
Addition komplexer Zahlen
Komplexe Zahlen lassen sich besonders einfach in der kartesischen Darstellung addieren, indem man jeweils separat (Realteil + Realteil) und (Imaginärteil + Imaginärteil) rechnet.
\(\eqalign{ & {z_1} + {z_2} = ({a_1} + {a_2}) + i \cdot ({b_1} + {b_2}) \cr & {z_1} + {z_2} = {r_1} \cdot \cos ({\varphi _1}) + i \cdot {r_1} \cdot sin({\varphi _1}) + {r_2} \cdot \cos \left( {{\varphi _2}} \right) + i \cdot {r_2} \cdot \sin \left( {{\varphi _2}} \right) \cr & {z_1} + {z_2} = {r_1} \cdot {e^{i{\varphi _1}}} + {r_2} \cdot {e^{i{\varphi _2}}} \cr}\)
Subtraktion komplexer Zahlen
Komplexe Zahlen lassen sich besonders einfach in der kartesischen Darstellung subtrahieren, indem man jeweils separat (Realteil minus Realteil) und (Imaginärteil minus Imaginärteil) rechnet.
\(\eqalign{ & {z_1} - {z_2} = ({a_1} - {a_2}) + i \cdot ({b_1} - {b_2}) \cr & {z_1} - {z_2} = {r_1} \cdot \cos ({\varphi _1}) + i \cdot {r_1} \cdot sin({\varphi _1}) - {r_2} \cdot \cos \left( {{\varphi _2}} \right) - i \cdot {r_2} \cdot \sin \left( {{\varphi _2}} \right) \cr & {z_1} - {z_2} = {r_1} \cdot {e^{i{\varphi _1}}} - {r_2} \cdot {e^{i{\varphi _2}}} \cr}\)
Multiplikation komplexer Zahlen
Komplexe Zahlen lassen sich besonders einfach in der Polarform multiplizieren. Merke: Produkt der Beträge, Summe der Argumente
\(\eqalign{ & {z_1} \cdot {z_2} = \left( {{a_1}{a_2} - {b_1}{b_2}} \right) + \left( {{a_1}{b_2} + {b_1}{a_2}} \right)i \cr & {z_1} \cdot {z_2} = {r_1}.{r_2}\left[ {\cos \left( {{\varphi _1} + {\varphi _2}} \right) + i\sin \left( {{\varphi _1} + {\varphi _2}} \right)} \right] \cr & {z_1} \cdot {z_2} = {r_1}{e^{i{\varphi _1}}} \cdot {r_2}{e^{i{\varphi _2}}} = {r_1}{r_2} \cdot {e^{i\left( {{\varphi _1} + {\varphi _2}} \right)}} \cr}\)
Division komplexer Zahlen
Komplexe Zahlen lassen sich besonders einfach in der Polarform multiplizieren. Merke: Quotient der Beträge, Differenz der Argumente
\(\eqalign{ & \dfrac{{{z_1}}}{{{z_2}}} = \dfrac{{{z_1}}}{{{z_2}}} \cdot \dfrac{{\overline {{z_2}} }}{{\overline {{z_2}} }} = \dfrac{{\left( {{a_1} + i{b_1}} \right)}}{{\left( {{a_2} + i{b_2}} \right)}} \cdot \dfrac{{\left( {{a_2} - i{b_2}} \right)}}{{\left( {{a_2} - i{b_2}} \right)}} = \dfrac{{\left( {{a_1}{a_2} + {b_1}{b_2}} \right)}}{{a_2^2 + b_2^2}} + \dfrac{{\left( {{b_1}{a_2} - {a_1}{b_2}} \right)}}{{a_2^2 + b_2^2}}i \cr & \dfrac{{{z_1}}}{{{z_2}}} = \dfrac{{{r_1}}}{{{r_2}}}\left[ {\cos \left( {{\varphi _1} - {\varphi _2}} \right) + i\sin \left( {{\varphi _1} - {\varphi _2}} \right)} \right] \cr & \dfrac{{{z_1}}}{{{z_2}}} = \dfrac{{{r_1}}}{{{r_2}}} \cdot {e^{i\left( {{\varphi _1} - {\varphi _2}} \right)}} \cr}\)
Satz von Moivre
Der Satz von Movire erleichtert das Potenzieren komplexer Zahlen in Polarform, da man das Potenzieren auf die Multiplikation eines Winkels (\({n\varphi }\)) vereinfacht.
\({z^n} = {\left| z \right|^n} \cdot {\left( {\cos \varphi + i\sin \varphi } \right)^n} = {\left| z \right|^n} \cdot {\left( {{e^{i\varphi }}} \right)^n} = {\left| z \right|^n} \cdot {e^{in\varphi }} = {\left| z \right|^n} \cdot \left[ {\cos \left( {n\varphi } \right) + i\sin \left( {n\varphi } \right)} \right]\)
Potenzen komplexer Zahlen
Um eine komplexe Zahl mit n zu potenzieren, bietet sich die Polarform an, da dabei lediglich der Betrag r zur n-ten Potenz zu nehmen ist und das Argument \(\varphi\) mit n zu multiplizieren ist.
\(\eqalign{ & {z^n} = {\left( {r \cdot {e^{i\varphi }}} \right)^n} = {r^n} \cdot {e^{i \cdot n \cdot \varphi }} \cr & {z^n} = {r^n}(\cos \left( {n\varphi } \right) + i\sin \left( {n\varphi } \right)) \cr} \)
Wurzeln komplexer Zahlen
Für das Wurzelziehen von komplexen Zahlen ist es zweckmäßig auf eine Polarform (trigonometrische Form oder Exponentialform) umzurechnen, da dabei lediglich die Wurzel aus dem Betrag r gezogen werden muss und das Argument durch n zu dividieren ist.
Die n-te Wurzel einer komplexen (und somit auch einer reellen) Zahl, hat im Bereich der komplexen Zahlen n Lösungen. Den ersten Wert, für k=0, bezeichnet man als den Hauptwert, alle anderen (n-1) Wurzelwerte sind zum Hauptwert um den Winkel \(\dfrac{{2 \cdot \pi }}{n}\) versetzt.
allgemein, die n-te Wurzel der komplexen Zahl z:
\(\begin{array}{l} \sqrt[n]{z} = {z^{\frac{1}{n}}} = {\left( {a + ib} \right)^{\frac{1}{n}}} = \\ = \sqrt[n]{r}\left( {\cos \frac{{\varphi + k2\pi }}{n} + i\sin \frac{{\varphi + k2\pi }}{n}} \right) = \\ = \sqrt[n]{r} \cdot {e^{i\frac{{\varphi + k2\pi }}{n}}} \end{array}\)
speziell, die 2-te Wurzel der komplexen Zahl z:
\(\sqrt z = \sqrt r \cdot {e^{i \cdot \left( {\frac{\varphi }{2} + k\pi } \right)}}{\text{ mit k = 0}}{\text{,1}}\)
wobei:
\(\eqalign{ & z = a + i \cdot b \cr & r = \sqrt {{a^2} + {b^2}} \cr & \varphi = \arctan \left( {\frac{b}{a}} \right) \cr & 2\pi \buildrel \wedge \over = 360^\circ ;\,\,\,\,\,k = 0,1,2,...,n - 1; \cr} \)
Achtung: Beim Winkel \(\varphi \) ist zu berücksichtigen, in welchem Quadranten der gaußschen Ebene sich die komplexe Zahl z befindet.
Beispiel: Soll zeigen, dass man den Hauptwert der 3-ten Wurzel ganz einfach erhält, will man auch die beiden verschobenen Lösungen kennen, muss man schon etwas rechnen!
\(\eqalign{ & z = 1 \cr & w = \root 3 \of z = \root 3 \of 1 = 1{\text{ }}...{\text{ Hauptwert}} \cr & \cr & r = 1 \cr & \varphi = 0 \cr & \cr & \root 3 \of z = \root n \of r \cdot {e^{i \cdot \frac{{\varphi + 2k\pi }}{n}}} \cr & \root 3 \of 1 = 1 \cdot {e^{i \cdot \frac{{2k\pi }}{3}}} \cr & k = 0:{w_0} = 1 \cdot {e^0} = 1{\text{ }}...{\text{ Hauptwert}} \cr & k = 1:{w_1} = 1 \cdot {e^{i \cdot \frac{{2 \cdot \pi }}{3}}} \approx - 0,5 + \frac{{\sqrt 3 }}{2}i \cr & k = 2:{w_2} = 1 \cdot {e^{i \cdot \frac{{4 \cdot \pi }}{3}}} \approx - 0,5 - \frac{{\sqrt 3 }}{2}i \cr} \)
Beispiel: Soll zeigen, dass man den Hauptwert der 2-ten Wurzel ganz einfach erhält, will man auch die verschobene 2. Lösung kennen, muss man schon etwas rechnen!
\(\eqalign{ & z = - 4 \cr & w = \sqrt z = \sqrt { - 4} = \sqrt 4 \cdot \sqrt { - 1} = 2 \cdot i{\text{ }}...{\text{ Hauptwert}} \cr & \cr & r = \sqrt {{{\left( { - 4} \right)}^2} + {0^2}} = 4 \cr & \varphi = \arctan \left( {\frac{0}{{ - 4}}} \right) = \arctan \left( 0 \right) = 180 \overset{\wedge}\to{=} \pi \cr & \cr & \sqrt z = \sqrt r \cdot {e^{i \cdot \left( {\frac{\varphi }{2} + k \cdot \pi } \right)}}{\text{ mit k = 0}}{\text{,1}} \cr & \sqrt { - 4} \cdot {e^{i\left( {\frac{\pi }{2} + k \cdot \pi } \right)}}{\text{ mit k = 0}}{\text{,1}} \cr & k = 0:{w_0} = \sqrt { - 4} = \sqrt 4 \cdot {e^{i \cdot \left( {\frac{\pi }{2} + 0 \cdot \pi } \right)}} = 2 \cdot \left( i \right) = 2 \cdot i{\text{ }}...{\text{ Hauptwert}} \cr & k = 1:{w_1} = \sqrt { - 4} = \sqrt 4 \cdot {e^{i \cdot \left( {\frac{{3\pi }}{2}} \right)}} = 2 \cdot \left( { - i} \right) = 2 \cdot \left( { - i} \right) \cr} \)
Logarithmen komplexer Zahlen
Die komplexe Logarithmusfunktion ist die Umkehrfunktion der komplexen Exponentialfunktion. Für das Logarithmieren ist es zweckmäßig auf Polarform umzurechnen, da dann lediglich der reelle Logarithmus vom Betrag r berechnet werden muss und sich der Imaginärteil zu \(i\left( {\varphi + 2k\pi } \right)\) ergibt. Bedingt durch die Periodizität der Exponentialfunktion ist der Imaginärteil lediglich auf ganzzahlige Vielfache k von 2π bestimmt.
\(\eqalign{ & \ln z = \ln \left( {r \cdot {e^{i\varphi }}} \right) = \ln r + i\left( {\varphi + 2k\pi } \right) \cr & \ln z = \ln \left| z \right| + i\left( {\varphi + 2k\pi } \right) \cr}\)
Zerlegung der Winkelfunktionen komplexer Zahlen in Real- und Imaginärteil
\(\begin{array}{l} \sin \left( {a + ib} \right) = \sin \left( a \right) \cdot \cosh \left( b \right) + i \cdot \cos \left( a \right) \cdot \sinh \left( b \right)\\ \cos \left( {a + ib} \right) = \cos \left( a \right) \cdot \cosh \left( b \right) - i \cdot \sin \left( a \right) \cdot \sinh \left( b \right)\\ \tan \left( {a + ib} \right) = \dfrac{{\sin \left( a \right) \cdot \cosh \left( b \right) + i \cdot \cos \left( a \right) \cdot \sinh \left( b \right)}}{{\cos \left( a \right) \cdot \cosh \left( b \right) - i \cdot \sin \left( a \right) \cdot \sinh \left( b \right)}} = \\ = \dfrac{{\sin \left( {2a} \right) + i \cdot \sinh \left( {2b} \right)}}{{\cos \left( {2a} \right) + \cosh \left( {2b} \right)}} \end{array}\)
Zerlegung der Hyperbelfunktionen komplexer Zahlen in Real- und Imaginärteil
\(\begin{array}{l} \sinh \left( {a + ib} \right) = \sinh \left( a \right) \cdot \cos \left( b \right) + i \cdot \cosh \left( a \right) \cdot \sin \left( b \right)\\ \cosh \left( {a + ib} \right) = \cosh \left( a \right) \cdot \cos \left( b \right) + i \cdot \sinh \left( a \right) \cdot \sin \left( b \right)\\ \tanh \left( {a + ib} \right) = \dfrac{{\sinh \left( a \right) \cdot \cos \left( b \right) + i \cdot \cosh \left( a \right) \cdot \sin \left( b \right)}}{{\cosh \left( a \right) \cdot \cos \left( b \right) + i \cdot \sinh \left( a \right) \cdot \sin \left( b \right)}} = \\ = \dfrac{{\sinh \left( {2a} \right) + i \cdot \sin \left( {2b} \right)}}{{\cosh \left( {2a} \right) + \cos \left( {2b} \right)}} \end{array}\)
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!