Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Reziprokenregel beim Differenzieren

Reziprokenregel beim Differenzieren

Die Reziprokenregel ist eine Abkürzung der Quotientenregel, die dann zur Anwendung kommt, wenn die abzuleitende Funktion der Kehrwert einer differenzierbaren Funktion f(x) ist. Die Regel besagt, dass der negative Quotient aus der abgeleiteten Funktion f'(x) mit dem Quadrat der Funktion f2(x) zu bilden ist.

Hier findest du folgende Inhalte

1
Formeln
4
Aufgaben
    Formeln
    Wissenspfad
    Aufgaben

    Ableitungsregeln

    Wenn f(x) mehrere Terme umfasst, die durch Rechenzeichen verbunden sind, dann bedient man sich der Ableitungsregeln. Die gängigsten Ableitungsregeln sollte man ebenfalls auswendig können.


    Konstanten- oder Faktorregel

    Die Faktorregel kommt dann zur Anwendung, wenn vor der abzuleitenden Funktion f(x) ein konstanter Faktor c steht. Mit andern Worten, wenn ein Proukt aus einer Konstanten c und einer Funktion f(x) abzuleiten sind. Die Regel besagt, dass ein konstanter Faktor beim Differenzieren unverändert bleibt.

    \(\eqalign{ & c \cdot f\left( x \right) \cr & c \cdot f'\left( x \right) \cr}\)


    Summen- bzw. Differenzenregel

    Die Summen- bzw. Differenzenregel kommt dann zur Anwendung, wenn zwei Funktionen f(x) und g(x) als deren Summe bzw. Differenz vorliegen. Die Regel besagt, dass die beiden Teilfunktionen individuell abzuleiten sind und erneut eine Summe oder Differenz bilden.

    \(\eqalign{ & f\left( x \right) \pm g\left( x \right) \cr & f'\left( x \right) \pm g'\left( x \right) \cr}\)


    Produktregel beim Differenzieren

    Die Produktregel kommt dann zur Anwendung, wenn zwei Funktionen f(x) und g(x) als deren Produkt vorliegen. Die Regel besagt, dass die Ableitung der 1. Funktion f'(x) mal der 2. Funktion g(x) plus die 1. Funktion f(x) mal der Ableitung der 2. Funktion g'(x) zu summieren sind

    \(\eqalign{ & f\left( x \right) \cdot g\left( x \right) \cr & f'\left( x \right) \cdot g\left( x \right) + f\left( x \right) \cdot g'\left( x \right) \cr}\)


    Quotientenregel beim Differenzieren

    Die Quotientenregel kommt dann zur Anwendung, wenn im Zähler die Funktion f(x) und im Nenner die Funktion g(x) stehen. Die Regel besagt, dass vom Produkt aus der Ableitung des Zählers f'(x) mit der Nennerfunktion g(x) das Produkt aus der Zählerfunktion mal der abgeleiteten Nennerfunktion zu bilden ist und diese Differenz ist dann durch das Quadrat der Nennerfunktion zu dividieren.

    Merksatz: "Ableitung des Zählers" mal Nenner MINUS Zähler mal Ableitung des Nenners DURCH Quadrat des Nenners"

    \(\eqalign{ & \dfrac{{f\left( x \right)}}{{g\left( x \right)}} \cr & \dfrac{{f'\left( x \right) \cdot g\left( x \right) - f\left( x \right) \cdot g'\left( x \right)}}{{{g^2}\left( x \right)}} \cr}\)


    Reziprokenregel

    Die Reziprokenregel ist eine Abkürzung der Quotientenregel, die dann zur Anwendung kommt, wenn die abzuleitende Funktion der Kehrwert einer differenzierbaren Funktion f(x) ist. Die Regel besagt, dass der negative Quotient aus der abgeleiteten Funktion f'(x) mit dem Quadrat der Funktion f2(x) zu bilden ist.

    \(\begin{array}{l} \dfrac{1}{{f\left( x \right)}}\\ - \dfrac{{f'\left( x \right)}}{{{f^2}\left( x \right)}} \end{array}\)


    Steht im Zähler nicht "1" sondern eine Konstante c, dann verhält sich diese gemäß der Faktorregel, d.h. sie bleibt beim Differenzieren unverändert.

    \(\eqalign{ & \dfrac{c}{{f\left( x \right)}} \cr & - c \cdot \dfrac{{f'\left( x \right)}}{{{f^2}\left( x \right)}} \cr}\)


    Kettenregel beim Differenzieren

    Die Kettenregel kommt dann zur Anwendung, wenn zwei Funktionen v(x) und u(x) mit einander verkettet sind. "Verkettet" bedeutet, dass sich die Funktion f(x) aus einer äußeren Funktion v(x) und einer inneren Funktion u(x) zusammensetzt. Die Regel besagt, dass man zuerst die äußere Funktion selbst ableitet v'(x) und dann mit deren "innerer Ableitung" u'(x) multipliziert.

    \(\eqalign{ & f\left( x \right) = v\left( {u\left( x \right)} \right) \cr & f'\left( x \right) = v'\left( {u\left( x \right)} \right) \cdot u'\left( x \right) \cr} \)


    Allgemeine Kettenregel

    Die allgemeine Kettenregel gibt an, wie eine Verkettung von mehr als 2 Funkktionen differenzierbar ist.

    \(\eqalign{ & f\left( x \right) = w\left( {v\left( {u\left( x \right)} \right)} \right) \cr & y' = f'\left( x \right) = w'\left( {v\left( {u\left( x \right)} \right)} \right) \cdot v'\left( {u\left( x \right)} \right) \cdot u'\left( x \right) \cr} \)

    Faktorregel (Differenzieren)
    Konstantenregel beim Differenzieren
    Ableitungsregeln
    Differenzenregel (Differenzieren)
    Summenregel beim Differenzieren
    Summen differenzieren
    Innere Ableitung
    Produktregel beim Differenzieren
    Reziprokenregel beim Differenzieren
    Kettenregel
    Quotientenregel beim Differenzieren
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Sandstrand 1050x450
    Startseite
    Aufgaben
    LösungswegBeat the Clock

    Aufgabe 151

    Differenzieren von Potenzen

    Gegeben sei die Funktion \(f(x) = {x^{ - 4}}\)

    Bilde die Ableitungsfunktion f‘(x) gemäß den Regeln der Differentialrechnung

    Potenzen differenzieren
    Reziprokenregel beim Differenzieren
    Quotientenregel beim Differenzieren
    Differenzieren von Potenzen
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Sandstrand 1050x450
    Startseite
    LösungswegBeat the Clock

    Aufgabe 152

    Reziprokenregel beim Differenzieren

    Gegeben sei die Funktion \(f(x) = \dfrac{1}{{2{x^4}}}\)

    Bilde die Ableitungsfunktion f‘(x) gemäß den Regeln der Differentialrechnung

    1. Teilaufgabe: Wende die Reziprokenregel an
    2. Teilaufgabe: Wende die Regeln zum Differenzieren von Potenzen an

    Reziprokenregel beim Differenzieren
    Potenzen differenzieren
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 1603

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
    Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 14. Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Ableitung

    Gegeben sind sechs Funktionsgleichungen mit einem Parameter k, wobei \(k \in {\Bbb Z}{\text{ und k}} \ne {\text{0}}\)

    • Aussage 1: \(f\left( x \right) = k\)
    • Aussage 2: \(f\left( x \right) = \dfrac{k}{x}\)
    • Aussage 3: \(f\left( x \right) = k \cdot x\)
    • Aussage 4: \(f\left( x \right) = {x^k}\)
    • Aussage 5: \(f\left( x \right) = {e^{k \cdot x}}\)
    • Aussage 6: \(f\left( x \right) = \sin \left( {k \cdot x} \right)\)

    Aufgabenstellung:
    Für welche der gegebenen Funktionsgleichungen gilt der Zusammenhang \(f'\left( x \right) = k \cdot f\left( x \right)\) für alle \(x \in {\Bbb R}\)? Kreuzen Sie die zutreffende Funktionsgleichung an!

    Ableitung - 1603. Aufgabe 1_603
    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AN 2.1
    Reziprokenregel beim Differenzieren
    Innere Ableitung
    Sinus differenzieren
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 1163

    AHS - 1_163 & Lehrstoff: AN 2.1
    Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Ableitungsregel
    Für welche der folgenden Funktionen gilt der Zusammenhang \(f'\left( x \right) = k \cdot f\left( x \right){\text{ mit }}k \in {{\Bbb R}^ + }\)

    • Aussage 1: \(f\left( x \right) = k \cdot x\)
    • Aussage 2: \(f\left( x \right) = {x^{2 \cdot k}}\)
    • Aussage 3: \(f\left( x \right) = k \cdot \sin \left( x \right)\)
    • Aussage 4: \(f\left( x \right) = {e^{k \cdot x}}\)
    • Aussage 5: \(f\left( x \right) = \dfrac{k}{x}\)
    • Aussage 6: \(f\left( x \right) = k \cdot \sqrt x\)

    Aufgabenstellung:
    Kreuzen Sie die zutreffende Funktionsgleichung an!

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AN 2.1
    Erste Ableitung einer Funktion
    Ableitungsregel - 1163. Aufgabe 1_163
    Lineare Funktion differenzieren
    Exponentialfunktionen differenzieren
    Reziprokenregel beim Differenzieren
    Wurzeln differenzieren
    Potenzen differenzieren
    Fragen oder Feedback

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Laptop
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH