Standardabweichung
Die Standardabweichung ist ein Maß dafür, wie weit im Durchschnitt die einzelnen Messwerte vom Mittelwert entfernt liegen, dh wie weit die einzelnen Messwerte um den Mittelwert streuen. Je kleiner die Standardabweichung ist, um so besser repräsentiert der Mittelwert die einzelnen Messwerte.
Hier findest du folgende Inhalte
Formeln
Beschreibende bzw. deskriptive Statistik
Die beschreibende bzw. deskriptive Statistik stellt große Datenmengen (Vollerhebung, Grundgesamtheit) übersichtlich dar und verdichtet diese, damit charakteristische Eigenschaften der Datenmenge durch einfache Kennzahlen ausgedrückt werden können. Bei den statistischen Kennzahlen unterscheidet man zwischen Lage- und Streumaßen
Lagemaße:
Die Lagemaße geben Auskunft zur zentralen Tendenz, darüber wo sich die Werte konzentrieren.
- Modalwert = Modus
- Arithmetisches Mittel
- Gewichtetes / gewogenes arithmetisches Mittel
- Geometrisches Mittel
- Median =Zentralwert
- Quantil
Streuungsmaße:
Die Steuungsmaße geben Auskunft über die Breite der Verteilung, also zur Variabilität der Werte.
- Spannweite
- Lineare Abweichung
- Varianz
- Standardabweichung
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Diskrete Zufallsvariable
Die Anzahl der Ergebnisse des Zufallsexperiments ist endlich / abzählbar. Eine diskrete Zufallsvariable ist durch die Angabe ihres Wertebereichs \({x_1},{x_2},...,{x_n}\) und den Einzelwahrscheinlichkeiten fur das Auftreten von jedem Wert des Wertebereichs, also \(P\left( {X = {x_1}} \right) = {p_1},\,\,\,P\left( {X = {x_2}} \right) = {p_2},...P\left( {X = {x_n}} \right) = {p_n}\) vollständig definiert. Man spricht von der Wahrscheinlichkeitsfunktion, welche es nur für diskrete Zufallsvariablen gibt. (Bei stetigen Zufallsvariablen gibt es entsprechend die Dichtefunktion.)
Spezielle Verteilungen diskreter Zufallsvariabler sind
- Bernoulli-Verteilung
- Binomialverteilung (mit Zurücklegen)
- Poissonverteilung
- hypergeometrische Verteilung (ohne Zurücklegen)
Wahrscheinlichkeitsfunktion
Die Wahrscheinlichkeitsfunktion, welche es nur für diskrete Zufallsvariablen gibt, beschreibt eine diskrete Wahrscheinlichkeitsverteilung, indem sie jedem \(x \in {\Bbb R}\) einer Zufallsvariablen X genau eine Wahrscheinlichkeit P aus dem Intervall \(\left[ {0;1} \right]\) zuordnet.
\(f:x \to p\)
\(f:x \to \left\{ {\begin{array}{*{20}{l}} {P\left( {X = {x_i}} \right)}&{für\,\,x = {x_i}}\\ 0&{für\,\,\,x \ne {x_i}} \end{array}} \right.\)
Funktionsgraph der Wahrscheinlichkeitsfunktion
Im Funktionsgraph der Wahrscheinlichkeitsverteilung werden über jedem (diskreten) Wert x die jeweilige Wahrscheinlichkeit P(X=x) dargestellt, wobei die einzelnen Wahrscheinlichkeiten P(X=x) mit Hilfe der Laplace-Wahrscheinlichkeit berechnet werden. Im Stabdiagramm wird über jedem (diskreten) Wert x ein Stab (dünner Balken) aufgetragen, dessen Höhe der jeweilige Wahrscheinlichkeit P(X=x) entspricht.
Verteilungsfunktion
Die Verteilungsfunktion einer diskreten Zufallsvariablen, auch kumulative Verteilfunktion genannt, gibt die Wahrscheinlichkeit dafür an, dass die Zufallsvariable X höchstens den Wert x annimmt.
\(F\left( x \right) = P\left( {X \leqslant x} \right)\)
Sie ist eine monoton steigende Treppenfunktion mit Sprüngen an den Stellen xi und daher nicht stetig. Geometrisch entspricht die Wahrscheinlichkeit P(X=x) der Sprunghöhe der Verteilungsfunktion F(x) an der Stelle x.
F(x) ist für jedes x definiert und nimmt Werte von mindestens 0 bis höchstens 1 an.
\(\eqalign{ & \mathop {\lim }\limits_{x \to - \infty } F(x) = 0 \cr & \mathop {\lim }\limits_{x \to \infty } F(x) = 1 \cr} \)
Darüber hinaus gilt:
\(\eqalign{ & P\left( {X \geqslant x} \right) = 1 - P\left( {X < x} \right) \cr & P\left( {X > x} \right) = 1 - P\left( {X \leqslant x} \right) \cr} \)
Mittelwert einer Vollerhebung bzw. einer Stichprobe
Der arithmetische Mittelwert bezieht sich immer auf die grundsätzlich abzählbare Anzahl n an Durchgängen eines Zufallsexperiments. Er ist definiert als die Summe aller beobachteten Werte dividiert durch die Anzahl der beobachteten Werte.
\(\overline x = \dfrac{1}{n} \cdot \sum\limits_{i = 1}^n {{x_i}} \)
Unterschied Mittelwert und Erwartungswert
Wiederholt man das Zufallsexperiment unendlich oft, geht also \(n \to \infty \), so wird aus dem Mittelwert der Erwartungswert.
Erwartungswert
Der Erwartungswert einer diskreten Zufallsvariablen X, welche die diskreten Werte x1, x2, ..., xn mit den zugehörigen Wahrscheinlichkeiten P(X=x1), P(X=x2), ... P(X=xn) annimmt, errechnet sich aus der Summe der Produkte vom jeweiligen Wert xi und seiner Wahrscheinlichkeit P(X=xi). Merkregel: "Was passiert" mal "mit welcher Wahrscheinlichkeit passiert es".
\(E\left( X \right) = \mu = {x_1} \cdot P\left( {X = {x_1}} \right) + {x_2} \cdot P\left( {X = {x_2}} \right) + ... + {x_n} \cdot P\left( {X = {x_n}} \right) = \sum\limits_{i = 1}^n {{x_i} \cdot P\left( {X = {x_i}} \right)} \)
mit: \(P\left( E \right) = \frac{{{\text{Anzahl günstige Fälle}}}}{{{\text{Anzahl möglicher Fälle}}}}\)
Der Erwartungswert ist ein Maß für die mittlere Lage der Verteilung, und somit ein Lageparameter der beschreibenden Statistik.
- Ist die Wahrscheinlichkeit für jeden Versuch die selbe (z.B. bei binomialverteilten Experimenten), dann ist der Erwartungswert gleich dem arithmetischen Mittel.
- Ist die Wahrscheinlichkeit für jeden Versuch unterschiedlich , dann ist der Erwartungswert gemäß obiger Formel ein gewichtetes arithmetisches Mittel.
Erwartungswert für den Fall dass die diskrete Verteilung eine Binomialverteilung ist,
die nur zwei Werte (Erfolg / Misserfolg) annehmen kann und deren Trefferwahrscheinlichkeit immer p ist:
\(E\left( X \right) = n \cdot p\)
Physikalische Analogie
- Physikalisch entspricht der Erwartungswert dem Schwerpunkt. Man muss sich dabei die Massen R(X=xi) an den Positionen xi entlang vom Zahlenstrahl x platziert vorstellen.
- Physikalisch entspricht die Varianz dem Trägheitsmoment, wenn man den oben beschriebenen Zahlenstrahl um eine Achse dreht, die senkrecht auf den Zahlenstrahl steht und die durch den Schwerpunkt verläuft.
Varianz
Die Varianz einer diskreten Zufallsvariablen ist die mittlere quadratische Abweichung der Zufallsvariablen von ihrem Erwartungswert und somit ein Streumaß der beschreibenden Statistik.
\({\sigma _x}^2 = Var\left( X \right) = {\sum\limits_{i = 1}^n {\left( {{x_i} - E\left( x \right)} \right)} ^2} \cdot P\left( {X = {x_i}} \right)\)
Verschiebungssatz
Der Verschiebungssatz für diskrete Zufallsvariablen kann den Rechenaufwand für die Berechnung der Varianz verringern, es kann aber zum Verlust von Rechengenauigkeit kommen.
\({\sigma _x}^2 = Var\left( X \right) = E\left( {{X^2}} \right) - E{\left( X \right)^2} = \sum\limits_{i = 1}^n {{x_i}^2 \cdot P\left( {X = {x_i}} \right) - E{{\left( X \right)}^2}} \)
Standardabweichung
Die Varianz hat den Nachteil, als Einheit das Quadrat der Einheit der zugrunde liegenden Zufallsvariablen zu haben. Das ist bei der Standardabweichung (auf Grund der Quadratwurzel) und beim Erwartungswert nicht der Fall.
\({\sigma _x} = \sqrt {Var\left( X \right)} \)
Physikalische Analogie für den Erwartungswert und für die Varianz:
- Physikalisch entspricht der Erwartungswert dem Schwerpunkt. Man muss sich dabei die Massen R(X=xi) an den Positionen xi entlang vom Zahlenstrahl x plaziert vorstellen.
- Physikalisch entspricht die Varianz dem Trägheitsmoment, wenn man den oben beschriebenen Zahlenstrahl um eine Achse dreht, die senkrecht auf den Zahlenstrahl steht und die durch den Schwerpunkt verläuft
Illustration zur Veranschaulichung einer kleinen Varianz:
\(\eqalign{ & {x_1} = 3;\,\,\,\,\,{x_2} = 4;\,\,\,\,\,{x_3} = 5; \cr & P\left( {{x_1}} \right) = 0,2;\,\,\,\,\,P\left( {{x_2}} \right) = 0,6;\,\,\,\,\,P\left( {{x_3}} \right) = 0,2; \cr & E(X) = \mu = \sum\limits_{i = 1}^3 {{x_i} \cdot P\left( {X = {x_i}} \right)} = 3 \cdot 0,2 + 4 \cdot 0,6 + 5 \cdot 0,2 = 4 \cr & Var(X) = {\sum\limits_{i = 1}^3 {\left( {{x_i} - E\left( X \right)} \right)} ^2} \cdot P\left( {X = {x_i}} \right) = {\left( {3 - 4} \right)^2} \cdot 0,2 + {\left( {4 - 4} \right)^2} \cdot 0,6 + {\left( {5 - 4} \right)^2} \cdot 0,2 = 0,4 \cr} \)
Alternativ errechnet sich die Varianz unter Zuhilfenahme vom Verschiebungssatz wie folgt:
\(Var(X) = \sum\limits_{i = 3}^3 {{x_i}^2 \cdot P\left( {X = {x_i}} \right)} - {\left( {E\left( X \right)} \right)^2} = {3^2} \cdot 0,2 + {4^2} \cdot 0,6 + {5^2} \cdot 0,2 - {4^2} = 0,4\)
Illustration zur Veranschaulichung einer großen Varianz mit dem gleichen Erwartungswert:
\(\eqalign{ & {x_1} = 2;\,\,\,\,\,{x_2} = 4;\,\,\,\,\,{x_3} = 6; \cr & P\left( {{x_1}} \right) = 0,2;\,\,\,\,\,P\left( {{x_2}} \right) = 0,6;\,\,\,\,\,P\left( {{x_3}} \right) = 0,2; \cr & E(X) = \mu = \sum\limits_{i = 1}^3 {{x_i} \cdot P\left( {X = {x_i}} \right)} = 2 \cdot 0,2 + 4 \cdot 0,6 + 6 \cdot 0,2 = 4 \cr & Var(X) = {\sum\limits_{i = 1}^3 {\left( {{x_i} - E\left( X \right)} \right)} ^2} \cdot P\left( {X = {x_i}} \right) = {\left( {2 - 4} \right)^2} \cdot 0,2 + {\left( {4 - 4} \right)^2} \cdot 0,6 + {\left( {6 - 4} \right)^2} \cdot 0,2 = 1,6 \cr} \)
Alternativ errechnet sich die Varianz unter Zuhilfenahme vom Verschiebungssatz wie folgt:
\(Var(X) = \sum\limits_{i = 3}^3 {{x_i}^2 \cdot P\left( {X = {x_i}} \right)} - {\left( {E\left( X \right)} \right)^2} = {2^2} \cdot 0,2 + {4^2} \cdot 0,6 + {6^2} \cdot 0,2 - {4^2} = 1,6\)
Stetige Zufallsvariable
Man spricht von einer stetigen Zufallsvariablen, wenn die Anzahl der Ergebnisse des Zufallsexperiments unendlich,also nicht abzählbar, ist. Sie wird durch eine Dichtefunktion und/oder eine Verteilungsfunktion beschrieben.
Spezielle Verteilungen stetiger Zufallsvariabler sind
- Rechtecksverteilung
- Exponentialverteilung
- Normalverteilung
- Standardnormalverteilung
Dichtefunktion
Die Fläche unter der Dichtefunktion beschreibt (mittels Integralrechnung) die Wahrscheinlichkeit dafür, dass die stetige Zufallsvariable innerhalb vom Intervall [a, b] liegt. Umgekehrt bedeutet dies, dass in Intervallen in denen die Dichte (de-facto) Null ist auch (de-facto) keine Realisierungen von X liegen, während in Intervallen mit hoher Dichte auch eine große Anzahl an Realisierungen von X liegen.
Dichtefunktion f(x): \(P\left( {a < X \le b} \right) = \int\limits_a^b {f\left( x \right)} \,\,dx = F\left( b \right) - F\left( a \right)\) , wobei die Fläche unter der Dichtefunktion normiert ist gemäß: \(\int\limits_{ - \infty }^\infty {f\left( x \right)} \,\,{\mathop{\rm dx}\nolimits} = 1\)
Die Dichtefunktion ist für stetige Zufallsvariablen das Äquivalent zur Wahrscheinlichkeitsfunktion von diskreten Zufallsvariablen. Sie kann nur positive Werte annehmen und die gesamte Fläche unter ihrem Graph hat den Wert 1. Aus der Dichtefunktion f(x) lässt sich keine Wahrscheinlichkeit P(X) ablesen, da die Wahrscheinlichkeit dafür, dass eine stetige Zufallsvariable X einen konkreten Wert x annimmt, Null ist. Es gilt also: \(f\left( x \right) \ne P\left( {X = x} \right)\)
Zwischen der Dichtefunktion f(x) und der Verteilungsfunktion F(x) besteht folgender Zusammenhang:
\(\begin{array}{l} f\left( x \right) = F'\left( x \right)\\ F\left( X \right) = \int\limits_{ - \infty }^\infty {f(t)\,\,dt} \end{array}\)
Durch Ableiten der Verteilfunktion F erhält man die Dichtefunktion. Aus einer gegebenen Dichtefunktion f erhält man durch Integrieren die Verteilfunktion F.
Verteilungsfunktion
Die Verteilungsfunktion F(x) einer stetigen Zufallsvariablen gibt die Wahrscheinlichkeit dafür an, dass eine Zufallsvariable X einen Wert der kleiner oder gleich x annimmt. Sie entspricht der Fläche unter der Dichtefunktion f(t), die sich bis zum Wert x kumuliert hat.
\(F(X) = \int\limits_{ - \infty }^\infty {f\left( t \right)} \,\,dt\)
Weil bei stetigen Zufallsvariablen die Wahrscheinlichkeit für jeden einzelnen Wert Null ist, gemäß \(P(X = x) = 0\) ist es egal, ob die Intervallgrenze zum Intervall gezählt wird [a, b], oder ob nicht (a, b):
\(P\left( {a \le X \le b} \right) = P\left( {a < X \le b} \right) = P\left( {a \le X < b} \right) = P\left( {a < X < b} \right) = F(b) - F(a)\)
Erwartungswert
Der Erwartungswert E(X) einer stetigen Zufallsvariable X gibt an, welchen Wert die Zufallsvariable X im Mittel bei einer unbegrenzten Wiederholung annimmt. Gegenüber dem Erwartungswert einer diskreten Verteilung ersetzt man bei der stetigen Verteilung die Summe durch das Integral und die Wahrscheinlichkeit P(X=xi) durch die Dichtefunktion f(x).
\(E(X) = \mu = \int\limits_{ - \infty }^\infty {x \cdot f\left( x \right)} \,\,dx\)
Varianz
Die Varianz einer stetigen Zufallsvariablen ist die mittlere quadratische Abweichung der Zufallsvariablen von ihrem Erwartungswert und somit ein Streumaß der beschreibenden Statistik.
\({\sigma _x}^2 = Var\left( X \right) = E{\left( {X - {\mu _x}} \right)^2} = \int\limits_{ - \infty }^\infty {{{\left( {x - {\mu _x}} \right)}^2}} \cdot f\left( x \right)\,\,dx\)
Verschiebungssatz
Der Verschiebungssatz für stetige Zufallsvariablen kann den Rechenaufwand für die Berechnung der Varianz verringern.
- Der 1. Term ist das einfacher zu rechnende Integral von X2 , also dem Erwartungswert von X2
- Der 2. Term ist ganz simpel das Quadrat vom Erwartungswert von X
\({\sigma _x}^2 = Var(X) = E{\left( X \right)^2} - {\left( {E\left( X \right)} \right)^2} = \left( {\int\limits_{ - \infty }^\infty {{x^2} \cdot f\left( x \right)\,\,dx} } \right) - {\left( {E\left( X \right)} \right)^2}\)
Standardabweichung
Die Varianz einer stetigen Zufallsvariablen hat den Nachteil, als Einheit das Quadrat der Einheit der zugrunde liegenden Zufallsvariablen zu haben. Das ist bei der Standardabweichung (auf Grund der Quadratwurzel) und beim Erwartungswert nicht der Fall.
\({\sigma _x} = \sqrt {Var\left( X \right)} \)
Physikalische Analogie für den Erwartungswert und für die Varianz:
- Physikalisch entspricht der Erwartungswert dem Schwerpunkt. Man muss sich dabei die Massen R(X=xi) an den Positionen xi entlang vom Zahlenstrahl x plaziert vorstellen.
- Physikalisch entspricht die Varianz dem Trägheitsmoment, wenn man den oben beschriebenen Zahlenstrahl um eine Achse dreht, die senkrecht auf den Zahlenstrahl steht und die durch den Schwerpunkt verläuft
Streuung
Unter Streuung versteht man die Verteilung der einzelnen Werte um den Mittelwert. Eine schwache Streuung bedeutet, dass die Werte dicht beim Mittelwert liegen, während eine starke Streuung bedeutet, dass die Werte entfernt vom Mittelwert liegen.
Beispiel:
Die Werte 100, 200 und 300 haben einen Mittelwert von 200. Die Werte 199, 200 und 201 haben ebenfalls den Mittelwert 200, sie sind streuen aber erheblich weniger.
Streumaße
Streumaße geben Auskunft über die Breite der Verteilung, also zur Variabilität der Werte. Streumaße messen die Streuung.
R | Spannweite (engl. range) |
e | Mittlere lineare Abweichung |
\({{s^2}{\text{ bzw}}{\text{. }}{\sigma ^2}}\) | Varianz |
\({s{\text{ bzw}}{\text{. }}\sigma }\) | Standardabweichung |
Streudiagramme
Streudiagramme bilden paarweise verknüpfte Datensätze (X, Y) in Form einer zweidimensionalen Punktwolke ab.
Spannweite
Die Spannweite R (engl. range) ist die Differenz zwischen dem größten und dem kleinsten Wert der geordneten Datenreihe. Sie beinhaltet lediglich eine Aussage bezüglich der beiden Extremwerte, erlaubt aber keine Aussage bezüglich der Struktur der Einzelwertverteilung zwischen den beiden Extremwerten.
\(R = {x_{{\text{max}}}} - {x_{{\text{min}}}}\)
Mittlere lineare Abweichung
Der mittleren linearen Abweichung liegt der Abstand von jedem einzelnen Wert xi zum arithmetischen Mittelwert \(\overline x\) zugrunde.
\(e = \dfrac{{\left| {{x_1} - \overline x } \right| + \left| {{x_2} - \overline x } \right| + ...\left| {{x_n} - \overline x } \right|}}{n} = \dfrac{1}{n}\sum\limits_{i = 1}^n {\left| {{x_i} - \overline x } \right|}\)
Varianz einer Grundgesamtheit
Die Varianz \({\sigma ^2} = Var\left( X \right)\) dient der Beschreibung der Wahrscheinlichkeitsverteilung einer Grundgesamtheit und ist ein Streumaß der beschreibenden Statistik. Die Varianz ist ein Maß für die quadrierte durchschnittliche Entfernung aller Messwerte vom arithmetischen Mittelwert \({\overline x }\) bzw. vom Erwartungswert \(\mu \).
Der Varianz liegt der quadrierte Abstand jedes einzelnen Werts xi zum arithmetischen Mittelwert \(\overline x \) bzw. dem Erwartungswert \(\mu \) zugrunde. Die Varianz hat daher eine andere Einheit als die Messwerte, nämlich deren Quadrat. Diese "Unschönheit" löst man auf, indem man mit der Standardabweichung arbeitet, welche die Quadratwurzel aus der Varianz ist.
\(\eqalign{
& {\sigma ^2} = Var\left( X \right) = \dfrac{{{{\left( {{x_1} - \overline x } \right)}^2} + {{\left( {{x_2} - \overline x } \right)}^2} + ... + {{\left( {{x_n} - \overline x } \right)}^2}}}{n} \cr
& {\sigma ^2} = \dfrac{1}{n} \cdot \sum\limits_{i = 1}^n {{{\left( {{x_i} - \mu } \right)}^2}} = \dfrac{1}{n} \cdot \sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline x } \right)}^2}} \cr} \)
Varianz vs. empirische Varianz
Das Wort "empirisch" weist darauf hin, dass Daten einer Stichprobe analysiert werden, die aus der Beobachtung eines Prozesses gewonnen wurden.
Merke:
Um auszudrücken, dass es sich um eine Stichprobe und nicht um die Grundgesamtheit handelt, ersetzen wir \(\sigma \to s\)
Merke:
Bei bekannter Grundgesamtheit kommt \(\dfrac{1}{n}\), bei Stichproben kommt grundsätzlich \(\dfrac{1}{{n - 1}}\) zur Anwendung!
"unkorrigierte" Varianz einer Stichprobe
Bei der unkorrigierten Stichprobenvarianz wird die Summe der quadrierten Abweichungen durch die Anzahl der erhobenen Merkmalsausprägungen n dividiert. Wir kennen den Erwartungswert \(\mu \) der Grundgesamtheit nicht und verwenden daher den arithmetischen Mittelwert \(\overline x \) der Stichprobe! Um auszudrücken, dass es sich um eine Stichprobe und nicht um die Grundgesamtheit handelt, ersetzen wir \(\sigma \to s\)
\({s_n}^2 = \dfrac{1}{n} \cdot \sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline x } \right)}^2}} \)
Die unkorrigierte Varianz ist ein verzerrter Schätzer für die Varianz der Grundgesamtheit. Sie unterschätzt systematisch die wahre Varianz, insbesondere bei kleinen Stichproben, denn in der Regel ist die Streuung innerhalb einer Stichprobe etwas geringer als in der gesamten Population, da extreme Werte oft nicht in der Stichprobe enthalten sind.
„korrigierte“ Varianz einer Stichprobe, gemäß der Bessel-Korrektur
Die Bessel-Korrektur ist eine statistische Anpassung, die angewendet wird, um eine verzerrte Schätzung der Stichprobenvarianz zu korrigieren. Sie wird verwendet, weil die unkorrigierte Stichprobenvarianz dazu neigt, die wahre Varianz der Grundgesamtheit zu unterschätzen. Das ist vor allem bei kleinen Stichproben der Fall. Die Bessel-Korrektur besteht darin, den Nenner von n auf (n - 1) zu ändern, wodurch die Varianz größer wird:
\({s_{n - 1}}^2 = \dfrac{1}{{n - 1}} \cdot \sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline x } \right)}^2}} \)
Beispiel
Stichprobe: 2, 4, 6 somit n=3
Empirischer Mittelwert = Mittelwert der Stichprobe:
\(\overline x = \dfrac{{2 + 4 + 6}}{3} = \dfrac{{12}}{3} = 4\)
Unkorrigierte Varianz der Stichprobe:
\({s_n}^2 = \dfrac{{{{\left( {2 - 4} \right)}^2} + {{\left( {4 - 4} \right)}^2} + {{\left( {6 - 4} \right)}^2}}}{3} = \dfrac{{{{\left( { - 2} \right)}^2} + {{\left( 0 \right)}^2} + {{\left( 2 \right)}^2}}}{3} = \dfrac{8}{3} \approx 2,67\)
Korrigierte Varianz der Stichprobe, gemäß Bessel-Korrektur
\({s_{n - 1}}^2 = \dfrac{{{{\left( {2 - 4} \right)}^2} + {{\left( {4 - 4} \right)}^2} + {{\left( {6 - 4} \right)}^2}}}{{3 - 1}} = \dfrac{{{{\left( { - 2} \right)}^2} + {{\left( 0 \right)}^2} + {{\left( 2 \right)}^2}}}{2} = \dfrac{8}{2} = 4\)
Varianz \(\sigma ^2\) einer diskreten Zufallsvariablen X mit den Werten x1, x2, ..., xk berechnen
\({\sigma ^2} = Var\left( X \right) = E{\left( {X - E\left( X \right)} \right)^2} = E\left( {{X^2}} \right) - {\left( {E\left( X \right)} \right)^2}\)
- Von jedem Wert xi der Zufallsvariablen X wird der Erwartungswert \(E\left( X \right) = \mu \) abgezogen.
- Diese Differenz wird quadriert
- Davon bildet man erneut den Erwartungswert, um so die Varianz zu erhalten.
\({\sigma ^2} = V\left( X \right) = Var\left( X \right) = {\sum\limits_{i = 1}^k {\left( {{x_i} - \mu } \right)} ^2} \cdot P\left( {X = {x_i}} \right) = {\sum\limits_{i = 1}^k {\left( {{x_i} - E\left( X \right)} \right)} ^2} \cdot P\left( {X = {x_i}} \right)\)
- Es wird jeweils vom Wert xi der diskreten Zufallsvariablen X der Erwartungswert E(X) abgezogen.
- Diese Differenz quadriert man und anschließend multipliziert man noch mit der Wahrscheinlichkeit P(X = xi).
- So verfährt man mit jedem Wert xi und summiert letztlich die einzelnen Ergebnisse auf, um so die Varianz zu erhalten.
Standardabweichung
Die Standardabweichung ist ein Maß für die durchschnittliche Entfernung aller Messwerte vom arithmetischen Mittelwert. Je stärker die Werte um den arithmetischen Mittelwert streuen um so höher ist die Standardabweichung. Die Standardabweichung einer Stichprobe ist umso größer, je kleiner der Stichprobenumfang ist. Der Graph der Dichtefunktion ist umso breiter und verläuft umso flacher, je kleiner die Stichprobe ist.
- \(\sigma\) ist die übliche Bezeichnung, wenn es sich um die Standardabweichung der Grundgesamtheit handelt.
- s ist die übliche Bezeichnung, wenn die Standardabweichung aus einer Stichprobe ermittelt wurde.
Beispiel: 10 Personen werden gefragt, wie viel sie für einen Sommerurlaub ausgeben. Der Mittelwert der 10 Ausgaben liegt bei 2.000€, die Standardabweichung liegt bei 200 €. Das bedeutet dass die durchschnittliche Entfernung aller Antworten vom Mittelwert 200 € beträgt.
Unterschied Standardabweichung und Varianz
- Die Standardabweichung ist ein Maß für die durchschnittliche, während die Varianz ein Maß für das Quadrat der durchschnittlichen Entfernung aller Messwerte vom arithmetischen Mittelwert ist.
- Der Vorteil der Standardabweichung gegenüber der Varianz ist, dass nicht Quadrate der Einheiten (z.B. Euro2) sondern die eigentlichen Einheiten der gemessenen Werte (z.B. Euro) verwendet werden.
- Die Standardabweichung ist die Wurzel aus der Varianz. Standardabweichung und Varianz sind direkt proportional zu einander.
Auswirkung von "Ausreißern"
Datenreihe | mittlere lineare Abweichung | Varianz | Standardabweichung | wahrer Mittelwert |
(10,10,10,10) | 0 | 0 | 0 | 10 |
(10,10,10,9) | 0,375 | 0,25 | 0,5 | 9,75 |
(10,10,10,8) | 0,75 | 1 | 1 | 9,5 |
(10,10,10,2) "Ausreißer" | 3 | 16 | 4 | 8 |
Standardabweichung einer Vollerhebung berechnen
Standardabweichung einer Vollerhebung berechnen, bei der man den wahren Mittelwert kennt → \(\dfrac{1}{n}\)
Die (empirische) Standardabweichung ist ein Maß dafür, wie weit im Durchschnitt die einzelnen Messwerte vom Erwartungswert entfernt liegen, d.h. wie weit die einzelnen Messwerte um den Erwartungswert streuen. Je kleiner die Standardabweichung ist, um so besser repräsentiert der Erwartungswert die einzelnen Messwerte.
- Betrachten wir einen extremen Fall: Sind alle einzelnen Messwerte gleich, dann ist die Standardabweichung null, weil dann alle Messwerte zu ihrem Erwartungswert gleich sind.
- Die Standardabweichung ist immer größer gleich Null.
\(\eqalign{ & \sigma = \sqrt {{\sigma ^2}} = \sqrt {\dfrac{{{{\left( {{x_1} - \overline x } \right)}^2} + {{\left( {{x_2} - \overline x } \right)}^2} + ...{{\left( {{x_n} - \overline x } \right)}^2}}}{n}} \cr & \sigma = \sqrt {\dfrac{1}{n} \cdot \sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline x } \right)}^2}\,\,} } \cr}\)
\(\sigma = \sqrt {Var\left( X \right)} \)
Korrigierte Standardabweichung einer Stichprobe berechnen
Die Stichprobenstandardabweichung ist umso größer, je kleiner der Stichprobenumfang n ist. Der Graph der Dichtefunktion ist umso breiter und verläuft umso flacher, je kleiner die Stichprobe ist. Die Standardabweichung der Stichprobe entspricht dem Abstand der Wendepunkte vom Graph der Dichtefunktion bis zum Erwartungswert der Stichprobe.
Standardabweichung einer Stichprobe vom Umfang n berechnen, bei der man den wahren Mittelwert nicht kennt → \(\dfrac{1}{{n - 1}}\)
\({s} = \sqrt {\dfrac{1}{{n - 1}} \cdot \sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline x } \right)}^2}\,\,} } \)
Standardabweichung einer Stichprobe vom Umfang n berechnen, bei gegebener absoluter Häufigkeit n1, .., nk → \(\dfrac{1}{{n - 1}}\)
\(s = \sqrt {\dfrac{1}{{n - 1}} \cdot \sum\limits_{i = 1}^k {{n_k} \cdot {{\left( {{x_i} - \overline x } \right)}^2}} } \)
Standardabweichung einer Stichprobe vom Umfang n berechnen, bei gegebener relativer Häufigkeit h1,..., hk → \(\dfrac{1}{{n - 1}}\)
\(s = \sqrt {\dfrac{n}{{n - 1}} \cdot \sum\limits_{i = 1}^k {{h_k} \cdot {{\left( {{x_i} - \overline x } \right)}^2}} } \)
Standardfehler bzw. Stichprobenfehler
Der Standardfehler (SEM = Standard Error of the Mean) ist ein Maß dafür, inwieweit die Standardabweichung einer Stichprobe s von der Standardabweichung der Grundgesamtheit σ abweicht. Wenn die Standardabweichung der Grundgesamtheit σ und die Stichprobengröße n bekannt sind, gilt:
\(SEM = {\sigma _S} = \dfrac{\sigma }{{\sqrt n }}\)
Je größer die Stichprobe, die ja im Nenner steht, umso kleiner der Standardfehler.
Beispiel:
Standardfehler SEM einer kleinen Stichprobe:
\(\eqalign{
& \sigma = 4,5{\text{ml}} \cr
& n = 10 \cr
& SEM = \frac{\sigma }{{\sqrt n }} = \frac{{4,5}}{{\sqrt {10} }} \approx 1,423{\text{ml}} \cr} \)
Standardfehler SEM einer großen Stichprobe:
\(\eqalign{
& \sigma = 4,5{\text{ml}} \cr
& n = 100 \cr
& SEM = \frac{\sigma }{{\sqrt n }} = \frac{{4,5}}{{\sqrt {100} }} = \frac{{4,5}}{{10}} \approx 0,45{\text{ml}} \cr} \)
Wir sehen: Der Standardfehler einer Stichprobe ist umso größer, je kleiner der Stichprobenumfang n ist.
\(n = 10 \to {\sigma _S} = 1,423{\text{ml}} > 0,45{\text{ml = }}{\sigma _s} \leftarrow n = 100\)
Unterschied Standardabweichung und Standardfehler
- Die Standardabweichung ist ein Maß für die durchschnittliche Entfernung aller Messwerte vom arithmetischen Mittelwert. Sie beeinflusst Breite und Höhe vom Graph der Dichtefunktion
- Der Standardfehler ist ein Maß für mittlere Abweichung des Mittelwerts einer Stichprobe zum Mittelwert der realen Grundgesamtheit.
Kovarianz - Korrelation - Scheinkorrelation - Regression
Kovarianz
Die Kovarianz ist ein dimensionsloses Maß für die Stärke vom linearen Zusammenhang zweier Datensätze x1, x2, … , xn bzw. y1, y2, … yn , deren Merkmale metrisch und stetig sind.
Korrelation
Korrelation beschreibt eine statistische Beziehung zwischen zwei Variablen, bei der Veränderungen in einer Variable mit Veränderungen in der zweiten Variable zusammen auftreten. Wenn zwei Variablen korrelieren, bedeutet dies, dass eine Veränderung in einer Variable mit einer Veränderung in der anderen Variable einhergeht (=korreliert). Im Unterschied zur Kovarianz ist bei der Korrelation eine Standardisierung erfolgt, was Vergleiche erlaubt. Die Korrelation bzw. der Korrelationskoeffizient r ist ein Maß für die lineare Abhängigkeit von 2 Datensätzen. Der Korrelationskoeffizient besitzt Werte zwischen -1 bis +1.
- r=-1: Es besteht ein gegenläufiger Zusammenhang. Eine Größe nimmt zu, die andere Größe nimmt ab
- r=0: Es besteht kein linearer Zusammenhang
- r=+1: Es besteht ein gleichläufiger Zusammenhang. Wenn eine Größe zunimmt, nimmt auch die andere Größe im selben Ausmaß zu
Ob ein Korrelationskoeffizient ab 0,5 oder erst ab 0,9 als "hoch" einzuschätzen ist, hängt von der jeweiligen Fragestellung ab. Man kann von Änderungen eines Datensatzes, gemäß dem Korrelationskoeffizient r nach Pearson Vorhersagen über die Änderung des anderen Datensatzes treffen und vice versa, ohne dass es eine Kausalbeziehung zwischen den Datensätzen gibt. Achtung: Korrelation impliziert keinen kausalen Zusammenhang zwischen den Datensätzen.
Scheinkorrelation
Von einer Scheinkorrelation spricht man, wenn es zwischen zwei Datensätzen zwar eine Korrelation gibt, diese aber auf keinen Ursache-Wirkungs Zusammenhang zurückgeführt werden kann. Korrelation bedeutet nämlich nicht zwangsläufig, dass eine Variable die Ursache für die Veränderung der anderen Variable ist.
Die Problematik bezüglich der Scheinkorrelation soll an Anhand eines Beispiels veranschaulicht werden: Seit Jahrzehnten sinkt die Anzahl an Störchen und die Anzahl an Geburten im Burgenland. D.h. die beiden Datensätze (Störche, Geburten) entwickeln sich in dieselbe Richtung und sind korreliert und man kann auch einen Korrelationskoeffizienten r > 0 berechnen. Dennoch gibt es keine Kausalität (kein Ursache- Wirkungsprinzip, kein Zusammenhang) zwischen den Datensätzen und es wäre daher falsch, auf Auswirkungen von einem Datensatz (Anzahl Störche) auf den anderen Datensatz (Anzahl Geburten) zu schließen.
Wenn eine Variable oder ein Ereignis eine Veränderung in einer anderen Variable oder einem anderen Ereignis verursacht, spricht man von Kausalität. Wenn man also berechtigt von einem Datensatz auf einen anderen korrelierten Datensatz schließen will, muss man zusätzlich die Kausalität, etwa durch ein Experiment oder einer Regressionsanalyse nachweisen, um eine allfällige Scheinkorrelation auf Grund einer tatsächlich bestehenden Korrelation ohne kausalem Zusammenhang ausschließen zu können!
Regression
Die Regression geht über die Korrelation hinaus uns setzt einen Ursache Wirkungszusammenhang (Kausalität) voraus. Daher gibt es eine unabhängige Variable (X, Regressor, Ursache) und eine abhängige Variable (Y, Regressand, Wirkung).
Lineare Regression
Ziel der linearen Regression ist es eine abhängige Variable (Y, Regressand) aus einer unabhängigen Variable (X, Regressor) mittels einer linearen Funktion, der Regressionsgeraden zu berechnen, um aus dem bekannten Zustand von X Vorhersagen für den unbekannten Zustand von Y treffen zu können. Dazu sollen die Abweichungsquadrate der beobachteten Werte zur Regressionsgeraden (Gerade = linearer Zusammenhang) minimiert werden. Alle Punkte eines Streudiagramms (nicht einzelne ! Punkte) haben den minimalen Abstand zur Regressionsgeraden.
Kovarianz
Die Kovarianz ist ein dimensionsbehaftetes Maß für die Stärke vom linearen Zusammenhang zweier metrischer Datensätze x1, x2, … , xn bzw. y1, y2, … yn.
\(Cov\left( {x,y} \right) = \dfrac{{\sum\limits_{i = 1}^N {\left( {{x_i} - \overline x } \right) \cdot \left( {{y_i} - \overline y } \right)} }}{{N - 1}}\)
Die Kovarianz ist leider anfällig gegenüber Ausreißer, nicht standardisiert und daher für Vergleiche ungeeignet. Standardisiert man die Kovarianz, erhält man die Korrelation.
\(Cov\left( {X,Y} \right) = 0\) ⇒ X und Y sind unkorreliert. D.h. aber nicht, dass sie auch unabhängig sein müssen.
Korrelationsanalyse
Mit einer Korrelationsanalyse werden Maßzahlen errechnet, um die Stärke eines linearen Zusammenhangs zweier Datensätze, deren Merkmale metrisch und stetig sind, zu quantifizieren. Beispiele für solch eine Maßzahl sind
- die Kovarianz
- der Korrelationskoeffizient r nach Pearson
Korrelationskoeffizient nach Pearson
Die Korrelation ist ein Maß für den linearen Zusammenhang zwischen zwei Datensätzen (Variablen). Der Korrelationskoeffizient nach Pearson ist eine von mehreren Möglichkeiten diesen Zusammenhang zu quantifizieren.
- Für einen Wert nahe bei +/- 1 besteht ein hoher linearer Zusammenhang
- Für einen Wert nahe bei 0 besteht kein linearer Zusammenhang
- Dessen ungeachtet kann aber ein nicht-linearer Zusammenhang bestehen
\(r(x,y) = \rho \left( {x,y} \right) = \dfrac{{Cov\left( {x,y} \right)}}{{\sqrt {Var\left( x \right) \cdot Var\left( y \right)} }} = \dfrac{{Cov\left( {x,y} \right)}}{{\sigma \left( x \right) \cdot \sigma \left( y \right)}}\)
Für den Korrelationskoeffizient r nach Pearson, dessen Wert zwischen -1 und 1 liegt gilt:
- Bei positiver Kovarianz / Korrelation r > 0 ändern sich die beiden Datensätze in dieselbe Richtung.
- Bei negativer Kovarianz / Korrelation r < 0 steigt ein Datensatz an während der andere Datensatz abnimmt.
- Bei einer Kovarianz / Korrelation r = 0 sind die beiden Datensätze unabhängig / unkorreliert voneinander.
Regressionsanalyse
Eine Regressionsanalyse geht über die Korrelationsanalyse hinaus (!) indem sie einen Ursache-Wirkungszusammenhang beschreibt. Ihr Ziel ist es einen mathematischen Zusammenhang zwischen unabhängigen und abhängigen Variablen herzustellen. Ist dieser Zusammenhang linear, so spricht man von einer Regressionsgeraden, andernfalls von einer Regressionsfunktion.
Regressionsgerade
Die Regressionsgerade stellt einen linearen Zusammenhang zwischen einer unabhängigen Variabel und einer abhängigen Variablen die vorhergesagt werden soll her. Die Regressionsgerade ist die bestmögliche Gerade, die man in einem Streudiagramm durch alle Daten legen kann, sodass alle Datenpunkte von der Geraden in Summe den kleinsten Abstand haben.
\(\eqalign{ & {\text{f}}\left( x \right){\text{ = y = k}} \cdot {\text{x + d}} \cr & k = \dfrac{{\sum\limits_{i = 1}^n {\left( {{x_i} - \overline x } \right) \cdot \left( {{y_i} - \overline y } \right)} }}{{\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline x } \right)}^2}} }} = {r_{xy}} \cdot \dfrac{{{s_y}}}{{{s_x}}} \cr & d = \overline y - b \cdot \overline x \cr}\)
\({r_{xy}}\) | Pearson Korrelation |
\({{\text{s}}_x},\,\,{s_y}\) | Standardabweichungen |
\(\overline x ,\,\,\overline y \) | Mittelwerte der gemessenen Daten xi und yi |
(x1,y1), ... (xn,yn) | Wertepaare |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1045
AHS - 1_045 & Lehrstoff: WS 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Testung
Es werden zwei Tests TX und TY, bei denen man jeweils maximal zehn Punkte erwerben kann, auf ihre Lösungshäufigkeit untersucht. Bei mehr als fünf Punkten gilt der jeweilige Test als bestanden. Die Zufallsvariablen X und Y beschreiben die Anzahl der erreichten Punkte. Die beiden untenstehenden Abbildungen zeigen jeweils die Verteilungen der beiden Variablen X und Y.
- Aussage 1: Mit Test TY werden mehr Kandidatinnen/Kandidaten den Test bestehen als mit Test TX.
- Aussage 2: Beide Zufallsvariablen X und Y sind binomialverteilt.
- Aussage 3: Die Erwartungswerte sind gleich: E(X) = E(Y).
- Aussage 4: Die Standardabweichungen sind gleich: σ X = σ Y.
- Aussage 5: Der Test TX unterscheidet besser zwischen Kandidatinnen/Kandidaten mit schlechteren und besseren Testergebnissen.
Aufgabenstellung:
Kreuzen Sie diejenigen zwei Aussagen an, die aus den gegebenen Informationen ablesbar sind!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1050
AHS - 1_050 & Lehrstoff: WS 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bernoulli-Experiment
Beim Realisieren eines Bernoulli-Experiments tritt Erfolg mit der Wahrscheinlichkeit p mit 0 < p < 1 ein. Die Werte der binomialverteilten Zufallsvariablen X beschreiben die Anzahl der Erfolge beim n-maligen unabhängigen Wiederholen des Experiments. E bezeichnet den Erwartungswert, V die Varianz und σ die Standardabweichung.
- Aussage 1: \(E\left( X \right) = \sqrt {n \cdot p}\)
- Aussage 2: \(V\left( X \right) = n \cdot p \cdot \left( {1 - p} \right)\)
- Aussage 3: \(P\left( {X = 0} \right) = 0\)
- Aussage 4:\(P\left( {X = 1} \right) = p\)
- Aussage5: \(V\left( X \right) = {\sigma ^2}\)
Aufgabenstellung:
Kreuzen Sie die beiden für n > 1 zutreffenden Aussagen an!
Aufgabe 1127
AHS - 1_127 & Lehrstoff: WS 1.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Datenreihe
Der arithmetische Mittelwert \(\overline x\) der Datenreihe \({x_1},\,\,{x_2},\,\,...,\,\,{x_{10}}{\text{ ist }}\overline x = 20\). Die Standardabweichung σ der Datenreihe ist σ = 5. Die Datenreihe wird um die beiden Werte x11 = 19 und x12 = 21 ergänzt.
- Aussage 1: Das Maximum der neuen Datenreihe x1, ... , x12 ist größer als das Maximum der ursprünglichen Datenreihe x1, ... , x10.
- Aussage 2: Die Spannweite der neuen Datenreihe x1, ... , x12 ist um 2 größer als die Spannweite der ursprünglichen Datenreihe x1, ... , x10.
- Aussage 3: Der Median der neuen Datenreihe x1, ... , x12 stimmt immer mit dem Median der ursprünglichen Datenreihe x1, ... , x10 überein.
- Aussage 4: Die Standardabweichung der neuen Datenreihe x1, ... , x12 ist kleiner als die Standardabweichung der ursprünglichen Datenreihe x1, ... , x10.
- Aussage 5: Der arithmetische Mittelwert der neuen Datenreihe x1, ... , x12 stimmt mit dem arithmetischen Mittelwert der ursprünglichen Datenreihe x1, ... , x10 überein.
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1128
AHS - 1_128 & Lehrstoff: WS 1.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Arithmetisches Mittel einer Datenreihe
Für das arithmetische Mittel einer Datenreihe \({x_1},\,\,{x_2},\,\,...,\,\,{x_{24}}{\text{ gilt }}\overline x = 115\). Die Standardabweichung der Datenreihe ist sx = 12. Die Werte einer zweiten Datenreihe \({y_1},\,\,{y_2},\,\,...,\,\,{y_{24}}\) entstehen, indem man zu den Werten der ersten Datenreihe jeweils 8 addiert, also \({y_1} = {x_1} + 8;\,\,\,\,\,{y_2} = {x_2} + 8\) usw.
Aufgabenstellung:
Geben Sie den Mittelwert und die Standardabweichung sy der zweiten Datenreihe an!
Aufgabe 1188
AHS - 1_188 & Lehrstoff: WS 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kennzahlen der Binomialverteilung
Auf einer Sortieranlage werden Flaschen von einem Scanner untersucht und es wird die Art des Kunststoffes ermittelt. 95 % der Flaschen werden richtig erkannt und in die bereitgestellten Behälter einsortiert. Die Werte der Zufallsvariablen X beschreiben die Anzahl der falschen Entscheidungen bei einem Stichprobenumfang von 500 Stück. Verwenden Sie die Binomialverteilung als Modell.
Aufgabenstellung:
Berechnen Sie den Erwartungswert und die Standardabweichung für die Zufallsvariable X!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1230
AHS - 1_230 & Lehrstoff: WS 1.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sportwettbewerb
150 Grazer und 170 Wiener Schüler/innen nahmen an einem Sportwettbewerb teil. Der Vergleich der Listen der Hochsprungergebnisse ergibt für beide Schülergruppen das gleiche arithmetische Mittel von 1,05 m sowie eine empirische Standardabweichung für die Grazer von 0,22 m und für die Wiener von 0,3 m.
- Aussage 1: Die Sprunghöhen der Grazer Schüler/innen weichen vom arithmetischen Mittel nicht so stark ab wie die Höhen der Wiener Schüler/innen.
- Aussage 2: Das arithmetische Mittel repräsentiert die Leistungen der Grazer Schüler/innen besser als die der Wiener.
- Aussage 3: Die Standardabweichung der Grazer ist aufgrund der geringeren Teilnehmerzahl kleiner als die der Wiener.
- Aussage 4: Von den Sprunghöhen (gemessen in m) der Wiener liegt kein Wert außerhalb des Intervalls [0,45; 1,65].
- Aussage 5: Beide Listen haben den gleichen Median.
Aufgabenstellung
Entscheiden Sie, welche Aussagen aus den gegebenen Daten geschlossen werden können, und kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1291
AHS - 1_291 & Lehrstoff: WS 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Binomialverteilte Zufallsvariable
Die Zufallsvariable X sei binomialverteilt mit n = 8 und p = 0,25.
x | P(x) |
0 | 0,1001 |
1 | 0,2670 |
2 | 0,3115 |
3 | 0,2076 |
4 | 0,0865 |
5 | 0,0231 |
6 | 0,0038 |
7 | 0,0004 |
8 | 0,00002 |
Aufgabenstellung:
μ ist der Erwartungswert, σ die Standardabweichung der Verteilung.
Berechnen Sie die folgende Wahrscheinlichkeit: \(P\left( {\mu - \sigma < X < \mu + \sigma } \right)\)
Aufgabe 1378
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 20. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Änderung statistischer Kennzahlen
Gegeben ist eine geordnete Liste mit neun Werten a1, a2, ... , a9. Der Wert a1 wird um 5 vergrößert, der Wert a9 wird um 5 verkleinert, die restlichen Werte der Liste bleiben unverändert. Durch die Abänderung der beiden Werte a1 und a9 kann sich eine neue, nicht geordnete Liste ergeben.
- Aussage 1: arithmetisches Mittel
- Aussage 2: Median
- Aussage 3: Modus
- Aussage 4: Spannweite
- Aussage 5: Standardabweichung
Aufgabenstellung:
Welche statistischen Kennzahlen der Liste werden durch die genannten Änderungen in keinem Fall verändert? Kreuzen Sie die entsprechende(n) statistische(n) Kennzahl(en) an!
Aufgabe 1426
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 20. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Statistische Kennzahlen
Gegeben ist eine Liste mit n natürlichen Zahlen a1, a2, ... , an.
- Aussage 1: arithmetisches Mittel
- Aussage 2: Standardabweichung
- Aussage 3: Spannweite
- Aussage 4: Median
- Aussage 5: Modus
Aufgabenstellung:
Welche statistischen Kennzahlen der Liste bleiben gleich, wenn jeder Wert der Liste um 1 erhöht wird? Kreuzen Sie die beiden zutreffenden Antworten an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1495
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 23. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parameter einer Binomialverteilung
Ein Zufallsexperiment wird durch eine binomialverteilte Zufallsvariable X beschrieben. Diese hat die Erfolgswahrscheinlichkeit p = 0,36 und die Standardabweichung σ = 7,2.
Aufgabenstellung:
Berechnen Sie den zugehörigen Parameter n (Anzahl der Versuche)!
Aufgabe 1635
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 22. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vergleich zweier Wahrscheinlichkeitsverteilungen
In den nachstehenden Diagrammen sind die Wahrscheinlichkeitsverteilungen zweier Zufallsvariablen X und Y dargestellt. Die Erwartungswerte der Zufallsvariablen werden mit E(X) und E(Y), die Standardabweichungen mit σ (X) und σ (Y) bezeichnet.
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
- Aussage 1: \(E\left( X \right) = E\left( Y \right)\)
- Aussage 2: \(\sigma \left( X \right) > \sigma \left( Y \right)\)
- Aussage 3: \(P\left( {X \leqslant 3} \right) < P\left( {Y \leqslant 3} \right)\)
- Aussage 4: \(P\left( {3 \leqslant X \leqslant 7} \right) = P\left( {3 \leqslant Y \leqslant 7} \right)\)
- Aussage 5: \(P\left( {X \leqslant 5} \right) = 0,3\)
Aufgabe 4158
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Die Adria-Wien-Pipeline - Aufgabe A_280
Österreich muss einen Großteil seines Erdölbedarfs durch Importe von Rohöl decken. Diese Importe werden vorwiegend über die Adria-Wien-Pipeline durchgeführt, die von Triest nach Wien-Schwechat führt.
Teil a
Die folgende Tabelle gibt die nach Österreich importierten Rohölmengen in den Jahren 2006 bis 2014 an:
Jahr | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
importierte Rohölmenge in Mio. t |
7,7 | 7,6 | 7,9 | 7,4 | 6,8 | 7,3 | 7,4 | 7,8 | 7,5 |
Quelle: https://www.wko.at/branchen/industrie/mineraloelindustrie/jahresberichte.html
[22.11.2018]
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie das arithmetische Mittel und die Standardabweichung der importierten Rohölmengen für diesen Zeitraum in Millionen Tonnen.
[1 Punkt]