Wärmemenge Q
Wärmemenge Q ist eine abgeleitete physikalische Größe mit der Einheit Joule J. Die Wärmemenge Q ist erforderlich, um eine Substanz mit der spezifischen Wärmekapazität c um eine bestimmte Temperaturdifferenz zu erwärmen.
Hier findest du folgende Inhalte
Formeln
Maßzahl, Größe und Einheit
Physikalische Größen sind das Produkt aus einer Maßzahl mit einer Einheit.
Größe = Maßzahl x Einheit
Maßzahl
Die Maßzahl gibt den Betrag (Menge, Stückzahl,...) als eine konkrete Zahl aus der Menge der reellen Zahlen an.
Basisgröße
Die Größe(nart) legt fest, um welche physikalische Größe es sich handelt. Es gibt sieben voneinander unabhängige Basisgrößen.
Abgeleitete Größe
Aus den sieben von einander unabhängigen Basisgrößen setzen sich alle anderen physikalischen Größen zusammen.
Basiseinheit
Jeder der sieben Basisgrößen ist eine Basiseinheit und ein Einheitenzeichen zugeordnet. Manche Basiseinheiten sind von anderen Basiseinheiten abhängig. So geht etwa in die Definition von der Basiseinheit "Meter" die Basiseinheit "Sekunde" ein. Die Einheit umfasst auch die Zehnerpotenz der Maßzahl. Zum Beispiel für 103 steht Kilo, für 106 steht Mega oder für 10-9 steht nano vor der eigentlichen Einheit.
Einheit
Einheiten dienen dazu Größen zu messen. Für abgeleitete Größen verwendet man Einheiten, die sich aus Basiseinheiten zusammen setzen.
Beispiel:
Zwei Holzstücke mit 7cm bzw. 7m Länge. Diese beiden physikalischen Größen setzen sich zusammen aus
- einer Maßzahl, die den Betrag angibt (in beiden Fällen "7")
- einer Größe(nart), die festlegt um welche Qualität es sich handelt (in beiden Fällen "Länge")
- einer Einheit, die festlegt wie der Betrag abzuzählen ist (im Beispiel "cm" bzw. "m")
Beispiel:
Vergleiche 7m, 7cm
Wir bringen auf die gleiche Einheit "m"
7cm = 0,07m
Nun können wir die Werte an Hand ihrer Zahlenwerte wie folgt vergleichen
7m > 0,07m=7cm
Ein Holzstück von 7m Länge ist länger als ein Holzstück mit einer Länge von 7cm.
7 SI Basisgrößen und ihre Basiseinheiten
Die 7 Basisgrößen sind von einander unabhängige Grundgrößen der Physik. SI steht für „Système international d’unités“, das ist das am weitesten verbreitete internationale Einheitensystem.
Basisgröße, Formelzeichen | Basiseinheit | Einheitszeichen |
Länge l | Meter | m |
Masse m | Kilogramm | kg |
Zeit t | Sekunde | s |
elektrische Stromstärke I | Ampere | A |
Temperatur T | Kelvin | K |
Stoffmenge n | Mol | mol |
Lichtstärke Iv | Candela | cd |
SI abgeleitete Größen und ihre Einheiten
Während die 7 Basisgrößen von einander unabhängig sind, haben daraus zusammengesetzte, sogenannte abgeleitete Größen entsprechende abgeleitete Einheiten. Wichtige abgeleitete Größen und ihre Einheiten sind
Abgeleitete physikalische Größe, Formelzeichen | Einheit | Einheitszeichen |
Fläche A | Quadratmeter | m² |
Volumen V | Kubikmeter | m³ |
Geschwindigkeit v | Kilometer pro Stunde | m/s |
Beschleunigung a | Meter pro Sekundenquadrat | m/s² |
mechanische Kraft F | Newton | N |
Frequenz f | Herz | Hz |
Arbeit W, Energie E, Wärmemenge Q | Joule | J |
mechanische Leistung P | Watt | W |
Druck p | Pascal | Pa |
Lichtstrom Φ | Lumen | lm |
Beleuchtungsstärke E | Lux | lx |
SI abgeleitete Größen und ihre Einheiten aus der Elektrotechnik
Während die 7 Basisgrößen von einander unabhängig sind, haben daraus zusammengesetzte, sogenannte abgeleitete Größen entsprechende abgeleitete Einheiten. Wichtige abgeleitete Größen und ihre Einheiten aus dem Gebiet der Elektrotechnik sind
Abgeleitete elektrotechnische Größe, Formelzeichen | Einheit | Einheitszeichen |
magnetische Feldstärke \({\overrightarrow H }\) | Ampere pro m | A/m |
elektrische Feldstärke \({\overrightarrow E }\) | Volt pro m | V/m |
Spannung U | Volt | V |
Arbeit W, Energie E | Joule | J |
elektrische Ladung Q | Coulomb | C |
elektrische Leistung P | Watt | W |
ohmscher Widerstand R | Ohm | \(\Omega\) |
elektrische Kapazität C | Farad | F |
magnetische Induktivität L | Henry | H |
magnetischer Fluss \(\Phi\) | Weber | Wb |
magnetische Flussdichte \({\overrightarrow B }\) | Tesla | T |
Physikalische Größen - Auswahl und Definition gemäß Formelsammlung AHS
Größe | Formel | Formel | Formel |
Dichte ρ | \(\rho = \dfrac{m}{v}\) | ||
Leistung P | \(P = \dfrac{{\Delta E}}{{\Delta t}}\) | \(P = \dfrac{{\Delta W}}{{\Delta t}}\) | \(P = \dfrac{{dW\left( t \right)}}{{dt}}\) |
Kraft F | \(F = m \cdot a\) | \(F = \dfrac{{dW}}{{ds}}\) | |
Arbeit | \(W = F \cdot s\) | \(W = \int {F\left( s \right)\,\,\operatorname{ds} }\) | |
kinetische Energie Ekin | \({E_{kin}} = \dfrac{{m \cdot {v^2}}}{2}\) | ||
potentielle Energie Epot | \({E_{pot}} = m \cdot g \cdot h\) | ||
gleichförmige geradlinige Bewegung v(t) | \(v = \dfrac{s}{t}\) | \(v = \dfrac{{ds}}{{dt}}\) | \(v\left( t \right) = s'\left( t \right) = \dfrac{{ds}}{{dt}}\) |
gleichmäßig beschleunigte geradlinige Bewegung a(t) | \(v = a \cdot t + {v_0}\) | \(a = \dfrac{{dv}}{{dt}}\) | \(a\left( t \right) = v'\left( t \right) = \dfrac{{dv}}{{dt}} = s''\left( t \right) = \dfrac{{{d^2}s}}{{d{t^2}}}\) |
Bewegungsvorgänge - Auswahl und Definition gemäß Formelsammlung BHS
Größe | Formel |
Zeit t | \(t\) |
Weg-Zeit-Funktion s(t) | \(s\left( t \right) = \int {v\left( t \right)} \,\,dt\) |
Geschwindigkeit-Zeit-Funktion v(t) | \(v(t) = s'\left( t \right) = \mathop s\limits^ \bullet = \dfrac{{ds}}{{dt}} = \int {a\left( t \right)} \,\,dt\) |
Beschleunigung-Zeit-Funktion a(t) | \(a\left( t \right) = s''\left( t \right) = \mathop s\limits^{ \bullet \bullet } = \dfrac{{{d^2}s}}{{d{t^2}}} = v'\left( t \right) = \mathop v\limits^ \bullet = \dfrac{{dv}}{{dt}}\) |
Anmerkung zur auf Universitäten üblichen Kurzschreibweise von "Ableitungen nach der Zeit": Die Notation mit einem "Punkt" über dem Formelzeichen bedeutet, dass es sich um die 1 Ableitung nach der Zeit handelt. Zwei "Punkte" bedeuten, dass es sich um die 2. Ableitung nach der Zeit handelt.
Größen und ihre Einheiten - Auswahl gemäß Formelsammlung AHS
Größe | Einheit | Symbol | Beziehung zu SI-Einheiten |
Temperatur T | Grad Celsius Grad Kelvin |
°C K |
\(\Delta t = \Delta T\) |
Frequenz f | Hertz | Hz | \(1 \cdot Hz = 1 \cdot {s^{ - 1}}\) |
Arbeit W, Energie E, Wärmemenge Q | Joule | J | \(1 \cdot J = 1 \cdot kg \cdot {m^{2}}\cdot s^{ - 2}\) |
Kraft F | Newton | N | \(1 \cdot N = 1 \cdot kg \cdot m \cdot {s^{ - 2}}\) |
Drehmoment M | Newtonmeter | \(N \cdot m\) | \(1 \cdot N \cdot m = 1 \cdot kg \cdot {m^2} \cdot {s^{ - 2}}\) |
Elektrischer Widerstand R | Ohm | \(\Omega\) | \(1 \cdot \Omega = 1 \cdot V \cdot {A^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {A^{ - 2}} \cdot {s^{ - 3}}\) |
Druck p | Pascal | Pa | \(1 \cdot Pa = 1 \cdot N \cdot {m^{ - 2}} = 1 \cdot kg \cdot {m^{ - 1}} \cdot {s^{ - 2}}\) |
Elektrische Stromstärke I | Ampere | A | \(1 \cdot A = 1 \cdot C \cdot {s^{ - 1}}\) |
Elektrische Spannung U | Volt | V | \(1 \cdot V = 1 \cdot J \cdot {C^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {A^{ - 1}} \cdot {s^{ - 3}}\) |
Leistung P | Watt | W | \(1 \cdot W = 1 \cdot J \cdot {s^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {s^{ - 3}}\) |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Temperatur T
Die Temperatur T ist eine skalare Zustandsgröße einen Körpers, gemessen in °C oder K, und ist unabhängig von dessen Größe oder Masse. Die Temperatur ist ein Maß für die mittlere kinetische Energie der Moleküle eines Körpers, man kann auch sagen, sie ist ein Maß für die Stärke der atomaren Unruhe. Die Menge der atomaren Unruhe bezeichnet man hingegen als Entropie.
\({E_{kin}} = \dfrac{3}{2} \cdot kT = \dfrac{1}{2}m{v^2}\)
p | Druck in bar |
V | Volumen des Gases in m³ |
N | Teilchenzahl |
k | Bolzmann-Konstante k=1,381.10-23 J/K |
R | universelle Gaskonstante \(R = 8,314\,\,\dfrac{J}{{mol \cdot K}}\) |
T | Absolute Temperatur in K |
Q | Wärme bzw. Wärmemenge in Joule |
H | Enthalpie oder Wärmeinhalt eines Systems in Joule |
S | Entropie als Maß für die Unordnung in J/K |
U | innere Energie eines Systems (Reaktionswärme) in Joule |
n | Stoffmenge in mol |
c | Substanzabhängige, spezifische Wärmekapazität in \(\dfrac{J}{{kg \cdot K}}\) |
m | Masse der Substanz in kg |
TE | Endtemperatur in K |
TA | Anfangstemperatur in K |
Wärme Q
Wärme ist eine Prozessgröße und bezeichnet die Energie die zwischen 2 Systemen unterschiedlicher Temperatur bei Wärmekontakt ausgetauscht wird, bis die Mischtemperatur vorliegt, ohne dass Arbeit verrichtet wird. Die Einheit der Wärme ist das Joule.
Wärmemenge Q
Die Wärmemenge Q ist erforderlich, um eine Substanz mit der spezifischen Wärmekapazität c um eine bestimmte Temperaturdifferenz (TE-TA) zu erwärmen. Je größer die Temperaturdifferenz, umso mehr Wärmemenge muss man zuführen. Die materialabhängige Wärmekapazität ist ihrerseits temperaturabhängig.
\(Q = c \cdot m \cdot \left( {{T_E} - {T_A}} \right)\)
Typische Wärmekapazitäten betragen:
\(\eqalign{
& {\text{Luft: }}710 \cdot \dfrac{J}{{kg \cdot K}} \cr
& {\text{Wasser: }}4000 \cdot \dfrac{J}{{kg \cdot K}} \cr
& {\text{Wasserstoff: 14}} \cdot \dfrac{J}{{kg \cdot K}} \cr
& \cr} \)
Der Wärmeenergieinhalt pro kg Luft bei 300K = 27°C errechnet sich zu: 710x300 = 213.000 J
Innere Energie U
Die innere Energie entspricht der Gesamtenergie eines abgeschlossenen Systems. Als solche ist sie konstant. Bei einem idealen Gas hängt die innere Energie nur von der Temperatur des Gases ab. Die Einheit der inneren Energie ist das Joule.
\(\begin{array}{l} U = \dfrac{3}{2} \cdot N \cdot k \cdot T\\ \Delta U = 0 = \Delta Q + \Delta W \end{array}\)
Enthalpie H
Die Enthalpie H ist das Maß für den Wärmeinhalt eines Systems. Sie setzt sich zusammen aus der inneren Energie und der sogenannten Volumensarbeit. Das ist die Arbeit die gegen den Druck zu verrichten ist, um das Volumen zu verändern. Die Einheit der Enthalpie ist das Joule.
\(H = U + p \cdot V\)
Entropie S
Die Entropie S ist eine fundamentale thermodynamische Zustandsgröße, deren Einheit Joule pro Kelvin ist. Sie hängt als mengenartige Eigenschaft eines Körpers von dessen Größe, Masse, Temperatur ab. Man kann sagen sie ist ein Maß für die Menge der atomaren Unruhe in einem Körper. Die Stärke der atomaren Unruhe kennen wir als Temperatur. Die in einem System gespeicherte Entropie ändert sich bei der Aufnahme oder Abgabe von Wärme Q.
\(\Delta S = \dfrac{{\Delta Q}}{T} = k.\ln W\)
W ist die thermodynamische Wahrscheinlichkeit.
D.h. man kann Entropie aus einem System heraus und in ein anderes System hineinleiten. Dann wird der erste Gegenstand kälter und der zweite Gegenstand wärmer. Ohne Entropie gibt es weder Temperatur noch Wärme.
Entropie verteilt sich in einem gleichförmigen Körper von selbst gleichmäßig. Entropie kann durch Energiezufuhr leicht erzeugt werden, sie kann aber nur abgeleitet werden, niemals aber abnehmen. Der Vorgang von Entropie-Erzeugung ist irreversibel. Entropie ist ein Maß für die Menge an atomarer Unordnung hinsichtlich Lage und Bewegung in einem Körper.
Bolzmann-Konstante k
Die Bolzmann Konstante k erlaubt die Berechnung der mittleren thermischen Energie eines Teilchens aus dessen Temperatur. Die Einheit der Bolzmann-Konstante ist Energie gebrochen durch Temperatur.
k=1,381.10-23 J/K.
Ideales Gasgesetz
Die Bolzmann-Konstante kommt auch im idealen Gasgesetz vor. Das ideale Gasgesetz beschreibt den Zusammenhang zwischen Druck und Volumen auf der einen Seite sowie der Temperatur und der Stoffmenge auf der anderen Seite.
\(p \cdot V = N \cdot k \cdot T = n \cdot R \cdot T\)
Boyle-Mariotte'sches Gasgesetz
Das Gasgesetz von Boyle und Mariotte besagt, dass Druck und Volumen eines idealen Gases indirekt proportional zu einander sind, wenn die Temperatur und die Teilchenanzahl des Gases unverändert bleibt. So geht die Halbierung des Volumen mit einer Verdoppelung vom Druck einher.
\({\rm{p}} \cdot {\rm{V = const}}\)
Absoluter Nullpunkt der Temperatur
Der „absolute Nullpunkt der Temperatur“ liegt bei 0K = -273,12°C. Kälter geht es nicht, denn dann haben alle Teilchen Null als kinetische Energie bzw. ist der Druck eines idealen Gases ebenfalls Null.
Nach oben hat die Temperatur anscheinend keine Grenze. An der Sonnenoberfläche beträgt sie 8.000 K im Sonneninneren 15 Millionen K und am höchsten war die Temperatur am Zeitpunkt der kleinsten physikalisch sinnvollen Zeitangabe nach dem Urknall, zur sogenannten Planck-Zeit mit 10-43 Sekunden, wobei damals die Planck-Temperatur von 1032 K herrschte.
0°C = Schmelzpunkt des Wassers;
100°C = Siedepunkt des Wassers;
Thermometer
Thermometer messen physikalische Größen (Länge von Metall) die sich mit der Temperatur ändern.