Wahrscheinlichkeitsfunktion der Binomialverteilung
\(f\left( k \right) = P\left( {X = k} \right) = \left( {\begin{array}{*{20}{c}} n\\ k \end{array}} \right) \cdot {p^k} \cdot {\left( {1 - p} \right)^{n - k}}\)
Hier findest du folgende Inhalte
Formeln
Binomialverteilung
Die Binomialverteilung ist eine diskrete Verteilung, der ein mehrstufigen Zufallsexperiment zugrunde liegt. Sie entsteht, wenn man ein Bernoulli Experiment (einstufiges Experiment, welches nur 2 mögliche Ausgänge hat) n Mal gleich und unverändert wiederholt. Die Grundgesamtheit ändert sich also im Laufe der Wiederholungen nicht, d.h. es handelt sich um ein „Ziehen mit Zurücklegen“.
X heißt binomialverteilt mit den 2 Parametern n und p:
- n … Anzahl der Ziehungen bzw. der Wiederholungen vom Zufallsexperiment, wobei n ∈ N
- p ... Laplace-Wahrscheinlichkeit für das Auftreten vom Ereignis X, bei jedem einzelnen der n Versuche, mit 0 < p < 1
- k ... Anzahl der Treffer, d.h. das Ereignis X tritt genau k mal ein, mit k=0, 1, 2, ... n
- X ... Zufallsvariable bzw. Trefferzahl, d.h. das Ereignis X tritt genau, weniger, öfter mindestens,... k mal ein, mit k=0, 1, 2, ... n, wobei die Anzahl der unabhängigen Bernoulli-Versuche n beträgt und p die Erfolgswahrscheinlichkeit beschreibt.
Wahrscheinlichkeitsfunktion der Binomialverteilung
Die Wahrscheinlichkeitsfunktion der Binomialverteilung gibt die Wahrscheinlichkeit dafür an, dass es genau k Treffer gibt:
\(f\left( k \right) = P\left( {X = k} \right) = \left( {\begin{array}{*{20}{c}} n\\ k \end{array}} \right) \cdot {p^k} \cdot {\left( {1 - p} \right)^{n - k}}\) für k=0, 1, ..,n
Zur Erinnerung: Der Binomialkoeffizient errechnet sich zu: \(\left( {\begin{array}{*{20}{c}} n\\ k \end{array}} \right) = \dfrac{{n!}}{{k! \cdot \left( {n - k} \right)!}}\)
Bestimmung der Wahrscheinlichkeit einer Binomialverteilung bei unterschiedlichen Grenzen
Ungleichungen im Sprachgebrauch:
- Weniger entspricht <
- Höchstens entspricht \( \le \)
- Mehr entspricht >
- Mindestens entspricht \( \ge \)
genau k Treffer | \(P(X = k) = \left( {\begin{array}{*{20}{c}} n\\ k \end{array}} \right) \cdot {p^k} \cdot {\left( {1 - p} \right)^{\left( {n - k} \right)}}\) |
höchstens k Treffer | \(P\left( {X \le k} \right) = \sum\limits_{i = 0}^k {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} \) |
weniger als k Treffer | \(P\left( {X < k} \right) = \sum\limits_{i = 0}^{k - 1} {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} \) |
mindestens k Treffer | \(P\left( {X \ge k} \right) = 1 - P\left( {X \le k - 1} \right) = 1 - \sum\limits_{i = 0}^{k - 1} {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} \) |
mehr als k Treffer | \(P\left( {X > k} \right) = 1 - P\left( {X \le k} \right) = 1 - \sum\limits_{i = 0}^k {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} \) |
mindestens k aber höchstens m Treffer | \(\begin{array}{l} P\left( {k \le X \le m} \right) = P\left( {X \le m} \right) - P\left( {X \le k - 1} \right) = \\ = \sum\limits_{i = 0}^m {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} - \sum\limits_{i = 0}^{k - 1} {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} \end{array}\) |
Illustration zur Veranschaulichung
Wahrscheinlichkeitsfunktion der Binomialverteilung mit den Parametern n=10 Wiederholungen und einer Erfolgswahrscheinlichkeit von p=0,3
Laplace Bedingung
Wenn die Laplace Bedingung \(\sigma = \sqrt {n \cdot p \cdot \left( {1 - p} \right)} > 3\) erfüllt ist, kann man die Binomialverteilung durch die Normalverteilung annähern.
Sigma-Umgebungen
Der Erwartungswert ist der Wert mit der größten Wahrscheinlichkeit. Links und rechts vom Erwartungswert gruppieren sich die restlichen binomialverteilten Wahrscheinlichkeiten. Wenn die Streuung groß genug ist, kann man die Binomialverteilung durch die Normalverteilung annähern. Um zu prüfen ob diese Näherung zulässig ist, verwendet man die Laplace Bedingung.
Radius der Sigma Umgebung (also Vielfachen der Standardabweichung):
\(\begin{array}{l} 1\sigma \buildrel \wedge \over = P\left( {\mu - \sigma \le X \le \mu + \sigma } \right) \approx 68\% \\ 2\sigma \buildrel \wedge \over = P\left( {\mu - 2\sigma \le X \le \mu + 2\sigma } \right) \approx 95,5\% \\ 3\sigma \buildrel \wedge \over = P\left( {\mu - 3\sigma \le X \le \mu + 3\sigma } \right) \approx 99,7\% \end{array}\)
Verteilungsfunktion der Binomialverteilung
Verteilungsfunktion der Binomialverteilung gibt die Wahrscheinlichkeit dafür an, dass es höchstens k Treffer gibt:
\(F\left( k \right) = P\left( {0 \le X \le k} \right) = \sum\limits_{i = 0}^k {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right)} \cdot {p^i} \cdot {\left( {1 - p} \right)^{n - i}}\)
Erwartungswert der Binomialverteilung
Der Erwartungswert eine Binomialverteilung, deren Zufallsvariable nur 2 Werte (Treffer / Niete) annehmen kann und deren Trefferwahrscheinlichkeit immer p ist, ergibt sich bei n unabhängigen Bernoulli-Versuchen aus dem Produkt von n und p.
\(E\left( X \right) = \mu = n \cdot p\)
Dabei handelt es sich um eine Vereinfachung der nachfolgenden Formel für den Erwartungswert einer diskreten Zufallsvariablen, die mehrere Werte annehmen kann.
Erwartungswert einer diskreten Verteilung
Der Erwartungswert einer diskreten Verteilung, deren Zufallsvariable mehrere Werte X=xi annehmen kann, die ihrerseits mit unterschiedlicher Wahrscheinlichkeit P(X=xi) vorkommen entspricht der Summe der Werte der Zufallsvariablen X=xi multipliziert mit der Wahrscheinlichkeit für das Eintreten von xi also P(X=xi).
\(E(X) = \sum\limits_{i = 1}^n {{x_i} \cdot P\left( {X = {x_i}} \right)} = \mu \)
\(P\left( E \right) = \dfrac{{{\text{Anzahl günstiger Fälle}}}}{{{\text{Anzahl mölicher Fälle}}}}\)
Varianz der Binomialverteilung
Die Varianz einer Binomialverteilung mit den Parametern n und p ist gegeben durch:
\({\sigma ^2} = Var\left( X \right) = n \cdot p \cdot \left( {1 - p} \right)\)
Hierbei ist X eine Zufallsvariable, welche die Anzahl der Treffer in n unabhängigen Bernoulli-Versuchen mit Erfolgswahrscheinlichkeit p beschreibt.
Standardabweichung der Binomialverteilung
\(\sigma = \sqrt {Var(X)} = \sqrt {n \cdot p \cdot \left( {1 - p} \right)} \)
Binomialverteilung → Normalverteilung
Die Binomialverteilung kann bei großen Stichproben, also bei relativ hohem n, durch die Normalverteilung ersetzt werden. Wobei dann für die Normalverteilung - so wie bei der Binomialverteilung - wie folgt gilt:
- Erwartungswert bei großem n: \(E\left( x \right) = \mu = n \cdot p\)
- Standardabweichung bei großem n: \(\sigma = \sqrt {Var(x)} = \sqrt {n \cdot p \cdot \left( {1 - p} \right)} \)
Hat eine Zufallsvariable X eine Normalverteilung mit beliebigen μ und σ, so kann man die Werte der Normalverteilung mit \(z = \dfrac{{X - \mu }}{\sigma }\) in eine Standardnormalverteilung umrechnen.
Das zugehörige \(\Phi \left( {{z}} \right)\) entnimmt man anschließend der entsprechenden Tabelle für die Standardnormalverteilung.
Bei 2 zum Erwartungswert symmetrisch liegenden Wahrscheinlichkeiten kann man den Umstand, dass \(\left| {{z_{oG}}} \right| = \left| {{z_{uG}}} \right|\) ausnützen und aus speziellen Tabellen für die Standardnormalverteilung direkt den Wert für das Intervall D ablesen.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 6024
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Der Marketingchef einer Handelskette plant eine Werbeaktion, bei der ein Kunde die Höhe des Rabatts bei seinem Einkauf durch zweimaliges Drehen an einem Glücksrad selbst bestimmen kann. Das Glücksrad hat zwei Sektoren, die mit den Zahlen 5 bzw. 2 beschriftet sind (vgl. Abbildung).
Der Rabatt in Prozent errechnet sich als Produkt der beiden Zahlen, die der Kunde bei zweimaligem Drehen am Glücksrad erzielt. Die Zufallsgröße X beschreibt die Höhe dieses Rabatts in Prozent, kann also die Werte 4, 10 oder 25 annehmen. Die Zahl 5 wird beim Drehen des Glücksrads mit der Wahrscheinlichkeit p erzielt. Vereinfachend soll davon ausgegangen werden, dass jeder Kunde genau einen Einkauf tätigt und auch tatsächlich am Glücksrad dreht.
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Ermitteln Sie mithilfe eines Baumdiagramms die Wahrscheinlichkeit dafür, dass ein Kunde bei seinem Einkauf einen Rabatt von 10% erhält.
(Ergebnis: \(2 \cdot p - 2 \cdot {p^2}\) )
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Zeigen Sie, dass für den Erwartungswert E(X) der Zufallsgröße X gilt:
\(E\left( X \right) = 9 \cdot {p^2} + 12 \cdot p + 4\)
Die Geschäftsführung will im Mittel für einen Einkauf einen Rabatt von 16% gewähren.
3. Teilaufgabe c.1) 3 BE - Bearbeitungszeit: 7:00
Berechnen Sie für diese Vorgabe den Wert der Wahrscheinlichkeit p.
Berechnen Sie für diese Vorgabe den zugehörigen Mittelpunktswinkel des Sektors mit der Zahl 5.
Die Wahrscheinlichkeit, dass ein Kunde bei seinem Einkauf den niedrigsten Rabatt erhält, beträgt 1/9.
4. Teilaufgabe d) 4 BE - Bearbeitungszeit: 9:20
Bestimmen Sie, wie viele Kunden mindestens an dem Glücksrad drehen müssen, damit mit einer Wahrscheinlichkeit von mehr als 99 % mindestens einer der Kunden den niedrigsten Rabatt erhält.
Es drehen 180 Kunden am Glücksrad.
Teilaufgabe e) 2 BE - Bearbeitungszeit: 4:40
Berechnen Sie, mit welcher Wahrscheinlichkeit mindestens 10 und höchstens 25 dieser Kunden den niedrigsten Rabatt für ihren Einkauf erhalten.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6011
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Stochastik
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Binomialverteilte Zufallsgröße
In einer Urne befinden sich vier rote und sechs blaue Kugeln. Aus dieser wird achtmal eine Kugel zufällig gezogen, die Farbe notiert und die Kugel anschließend wieder zurückgelegt.
1. Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Geben Sie einen Term an, mit dem die Wahrscheinlichkeit des Ereignisses „Es werden gleich viele rote und blaue Kugeln gezogen“ berechnet werden kann.
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Beschreiben Sie im Sachzusammenhang jeweils ein Ereignis, dessen Wahrscheinlichkeit durch den angegebenen Term berechnet werden kann.
- Aussage 1: \(1 - {\left( {\dfrac{3}{5}} \right)^8}\)
- Aussage 2: \({\left( {\dfrac{3}{5}} \right)^8} + 8 \cdot \dfrac{2}{5} \cdot {\left( {\dfrac{3}{5}} \right)^7}\)
Aufgabe 4203
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kontrolle der Geschwindigkeit - Aufgabe A_117
Teil a
Die Wahrscheinlichkeit, dass auf einem bestimmten Abschnitt der Westautobahn ein Fahrzeug mit überhöhter Geschwindigkeit unterwegs ist, beträgt 4 %. Eine Zufallsstichprobe von 1 500 Fahrzeugen wird überprüft. Die binomialverteilte Zufallsvariable X gibt die Anzahl derjenigen Fahrzeuge an, die dort mit überhöhter Geschwindigkeit unterwegs sind.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Formel zur Berechnung der Wahrscheinlichkeit, dass genau a Fahrzeuge dieser Zufallsstichprobe mit überhöhter Geschwindigkeit unterwegs sind. P(X = a)
[1 Punkt]
Aufgabe 4218
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Psi-Tests - Aufgabe A_291
Teil a
Seit vielen Jahren hat die GWUP (Gesellschaft zur wissenschaftlichen Untersuchung von Parawissenschaften e. V.) ein Preisgeld für den Nachweis einer paranormalen (übersinnlichen) Fähigkeit ausgeschrieben. Die behaupteten Fähigkeiten einer Versuchsperson werden dabei mit verschiedenen Tests überprüft.
Eine Versuchsperson muss auf Basis ihrer paranormalen Fähigkeiten angeben, unter welcher von 10 Schachteln ein Glas Wasser versteckt ist. Der Versuch wird 13-mal durchgeführt, wobei das Glas Wasser jedes Mal neu versteckt wird. Um die Testphase zu bestehen, müssen bei 13 Durchführungen des Versuchs 7 oder mehr Treffer erzielt werden.
Es wird angenommen, dass die Versuchsperson keine paranormalen Fähigkeiten besitzt und daher bei jeder Durchführung des Versuchs mit einer Wahrscheinlichkeit von 10 % einen Treffer erzielt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Erwartungswert für die Anzahl der Treffer.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie, dass es wahrscheinlicher ist, dass diese Versuchsperson mindestens 1 Treffer erzielt, als dass sie gar keinen Treffer erzielt.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Wahrscheinlichkeit, mit der die Versuchsperson die Testphase besteht.
[1 Punkt]
Aufgabe 4219
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Psi-Tests - Aufgabe A_291
Teil b
Eine Versuchsperson muss auf Basis ihrer paranormalen Fähigkeiten angeben, ob in einem Kabel Strom fließt oder nicht. Dieser Versuch wird 50-mal durchgeführt. Um die Testphase zu bestehen, müssen bei 50 Durchführungen des Versuchs 40 oder mehr Treffer erzielt werden.
Es wird angenommen, dass die Versuchsperson keine paranormalen Fähigkeiten besitzt und daher bei jeder Durchführung des Versuchs mit einer Wahrscheinlichkeit von 50 % einen Treffer erzielt.
- Ereignis 1: Die Versuchsperson erzielt mindestens 40 Treffer
- Ereignis 2: Die Versuchsperson erzielt höchstens 20 Treffer
- Wahrscheinlichkeit A: \(\sum\limits_{k = 20}^{50} {\left( {\begin{array}{*{20}{c}} {50}\\ k \end{array}} \right)} \cdot {0,5^k} \cdot {0,5^{50 - k}}\)
- Wahrscheinlichkeit B: \(\sum\limits_{k = 0}^{20} {\left( {\begin{array}{*{20}{c}} {50}\\ k \end{array}} \right)} \cdot {0,5^k} \cdot {0,5^{50 - k}}\)
- Wahrscheinlichkeit C: \(\sum\limits_{k = 0}^{40} {\left( {\begin{array}{*{20}{c}} {50}\\ k \end{array}} \right)} \cdot {0,5^k} \cdot {0,5^{50 - k}}\)
- Wahrscheinlichkeit D: \(\sum\limits_{k = 40}^{50} {\left( {\begin{array}{*{20}{c}} {50}\\ k \end{array}} \right)} \cdot {0,5^k} \cdot {0,5^{50 - k}}\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Ordnen Sie den beiden Ereignissen jeweils die zutreffende Wahrscheinlichkeit aus A bis D zu.
[2 zu 4] [1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4191
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lieblingsfarbe - Aufgabe A_082
Teil a
Die Wahrscheinlichkeit, dass eine zufällig ausgewählte Person Rosa als Lieblingsfarbe nennt, beträgt 13 %. 25 zufällig ausgewählte Personen werden nach ihrer Lieblingsfarbe gefragt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Wahrscheinlichkeit, dass genau 3 der 25 Personen Rosa als Lieblingsfarbe nennen.
[1 Punkt]
Aufgabe 4193
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lieblingsfarbe - Aufgabe A_082
Teil c
Die binomialverteilte Zufallsvariable X beschreibt die Anzahl derjenigen Personen unter 10 Befragten, die Lila als Lieblingsfarbe nennen. Die Wahrscheinlichkeitsfunktion dieser Zufallsvariablen ist in der nachstehenden Abbildung dargestellt.
Die Wahrscheinlichkeit, dass unter 10 Befragten maximal 3 Befragte Lila als Lieblingsfarbe nennen, betragt 96 %.
1. Teilaufgabe - Bearbeitungszeit 5:40
Geben Sie die Wahrscheinlichkeit für die in der obigen Abbildung fehlende Säule für P(X = 2) an.
[1 Punkt]
Aufgabe 1374
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 24. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Würfeln
Ein fairer Würfel wird zehnmal geworfen.
Welche Wahrscheinlichkeit wird durch den Term \(1 - \left[ {\left( {\begin{array}{*{20}{c}} {10}\\ 9 \end{array}} \right) \cdot {{\left( {\dfrac{1}{6}} \right)}^9} \cdot \dfrac{5}{6} + {{\left( {\dfrac{1}{6}} \right)}^{10}}} \right]\) angegeben?
- Aussage 1: Der Term gibt die Wahrscheinlichkeit an, höchstens acht Sechser zu werfen.
- Aussage 2: Der Term gibt die Wahrscheinlichkeit an, mehr als zweimal keinen Sechser zu werfen.
- Aussage 3: Der Term gibt die Wahrscheinlichkeit an, mindestens einmal keinen Sechser zu werfen.
- Aussage 4: Der Term gibt die Wahrscheinlichkeit an, weniger als neun Sechser zu werfen.
- Aussage 5: Der Term gibt die Wahrscheinlichkeit an, mehr als acht Sechser zu werfen.
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Antwort(en) an!
Aufgabe 1519
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 23. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zufallsexperiment
Bei einem Zufallsexperiment, das 25-mal wiederholt wird, gibt es die Ausgänge „günstig“ und „ungünstig“. Die Zufallsvariable X beschreibt, wie oft dabei das Ergebnis „günstig“ eingetreten ist. X ist binomialverteilt mit dem Erwartungswert 10.
- Aussage 1: P(X = 25) = 10
- Aussage 2: Wenn man das Zufallsexperiment 25-mal durchführt, werden mit Sicherheit genau 10 Ergebnisse „günstig“ sein.
- Aussage 3: Die Wahrscheinlichkeit, dass ein einzelnes Zufallsexperiment „günstig“ ausgeht, ist 40 %.
- Aussage 4: Wenn man das Zufallsexperiment 50-mal durchführt, dann ist der Erwartungswert für die Anzahl der „günstigen“ Ergebnisse 20.
- Aussage 5: P(X > 10) > P(X > 8)
Aufgabenstellung:
Zwei der nachstehenden Aussagen lassen sich aus diesen Informationen ableiten. Kreuzen Sie die beiden zutreffenden Aussagen an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1660
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 23. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Binomialverteilung
Der relative Anteil der österreichischen Bevölkerung mit der Blutgruppe „AB Rhesusfaktor negativ“ (AB–) ist bekannt und wird mit p bezeichnet. In einer Zufallsstichprobe von 100 Personen soll ermittelt werden, wie viele dieser zufällig ausgewählten Personen die genannte Blutgruppe haben.
Aufgabenstellung:
Ordnen Sie den vier angeführten Ereignissen jeweils denjenigen Term (aus A bis F) zu, der die diesem Ereignis entsprechende Wahrscheinlichkeit angibt!
- Ereignis 1: Genau eine Person hat die Blutgruppe AB–.
- Ereignis 2: Mindestens eine Person hat die Blutgruppe AB–.
- Ereignis 3: Höchstens eine Person hat die Blutgruppe AB–.
- Ereignis 4: Keine Person hat die Blutgruppe AB–.
- Term A: \(1 - {p^{100}}\)
- Term B: \(p \cdot {\left( {1 - p} \right)^{99}}\)
- Term C: \(1 - {\left( {1 - p} \right)^{100}}\)
- Term D: \({\left( {1 - p} \right)^{100}}\)
- Term E: \(p \cdot {\left( {1 - p} \right)^{99}} \cdot 100\)
- Term F: \({\left( {1 - p} \right)^{100}} + p \cdot {\left( {1 - p} \right)^{99}} \cdot 100\)
Aufgabe 1708
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 08. Mai 2019 - Teil-1-Aufgaben - 23. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Trefferwahrscheinlichkeit
Bei einem Training wirft eine Basketballspielerin einen Ball sechsmal hintereinander zum Korb. Fällt der Ball in den Korb, spricht man von einem Treffer. Die Trefferwahrscheinlichkeit dieser Spielerin betragt bei jedem Wurf 0,85 (unabhängig von den anderen Würfen).
Aufgabenstellung:
Ordnen Sie den vier Ereignissen jeweils denjenigen Term (aus A bis F) zu, der die Wahrscheinlichkeit des Eintretens dieses Ereignisses beschreibt!
- Ereignis 1: Die Spielerin trifft genau einmal.
- Ereignis 2: Die Spielerin trifft höchstens einmal.
- Ereignis 3: Die Spielerin trifft mindestens einmal.
- Ereignis 4: Die Spielerin trifft genau zweimal.
- Wahrscheinlichkeit A: \(1 - {0,85^6}\)
- Wahrscheinlichkeit B: \({0,15^6} + \left( {\begin{array}{*{20}{c}} 6\\ 1 \end{array}} \right) \cdot {0,85^1} \cdot {0,15^5}\)
- Wahrscheinlichkeit C: \(1 - {0,15^6}\)
- Wahrscheinlichkeit D: \({0,85^6} + \left( {\begin{array}{*{20}{c}} 6\\ 1 \end{array}} \right) \cdot {0,85^5} \cdot {0,15^1}\)
- Wahrscheinlichkeit E: \(6 \cdot 0,85 \cdot {0,15^5}\)
- Wahrscheinlichkeit F: \(\left( {\begin{array}{*{20}{c}} 6\\ 2 \end{array}} \right) \cdot {0,85^2} \cdot {0,15^4}\)
[0 / ½ / 1 Punkt]
Aufgabe 1732
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2019 - Teil-1-Aufgaben - 23. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Pasch
Bei einem Spiel werden in jeder Spielrunde zwei Würfel geworfen. Zeigen nach einem Wurf beide Würfel die gleiche Augenzahl, spricht man von einem Pasch. Die Wahrscheinlichkeit, einen Pasch zu werfen, beträgt 1/6.
Aufgabenstellung:
Es werden acht Runden (unabhängig voneinander) gespielt. Die Zufallsvariable X bezeichnet dabei die Anzahl der geworfenen Pasche. Berechnen Sie die Wahrscheinlichkeit für den Fall, dass die Anzahl X der geworfenen Pasche unter dem Erwartungswert E(X) liegt.
[0 / 1 Punkt]