Weg-Zeit-Funktion
Hier findest du folgende Inhalte
Formeln
Maßzahl, Größe und Einheit
Physikalische Größen sind das Produkt aus einer Maßzahl mit einer Einheit.
Größe = Maßzahl x Einheit
Maßzahl
Die Maßzahl gibt den Betrag (Menge, Stückzahl,...) als eine konkrete Zahl aus der Menge der reellen Zahlen an.
Basisgröße
Die Größe(nart) legt fest, um welche physikalische Größe es sich handelt. Es gibt sieben voneinander unabhängige Basisgrößen.
Abgeleitete Größe
Aus den sieben von einander unabhängigen Basisgrößen setzen sich alle anderen physikalischen Größen zusammen.
Basiseinheit
Jeder der sieben Basisgrößen ist eine Basiseinheit und ein Einheitenzeichen zugeordnet. Manche Basiseinheiten sind von anderen Basiseinheiten abhängig. So geht etwa in die Definition von der Basiseinheit "Meter" die Basiseinheit "Sekunde" ein. Die Einheit umfasst auch die Zehnerpotenz der Maßzahl. Zum Beispiel für 103 steht Kilo, für 106 steht Mega oder für 10-9 steht nano vor der eigentlichen Einheit.
Einheit
Einheiten dienen dazu Größen zu messen. Für abgeleitete Größen verwendet man Einheiten, die sich aus Basiseinheiten zusammen setzen.
Beispiel:
Zwei Holzstücke mit 7cm bzw. 7m Länge. Diese beiden physikalischen Größen setzen sich zusammen aus
- einer Maßzahl, die den Betrag angibt (in beiden Fällen "7")
- einer Größe(nart), die festlegt um welche Qualität es sich handelt (in beiden Fällen "Länge")
- einer Einheit, die festlegt wie der Betrag abzuzählen ist (im Beispiel "cm" bzw. "m")
Beispiel:
Vergleiche 7m, 7cm
Wir bringen auf die gleiche Einheit "m"
7cm = 0,07m
Nun können wir die Werte an Hand ihrer Zahlenwerte wie folgt vergleichen
7m > 0,07m=7cm
Ein Holzstück von 7m Länge ist länger als ein Holzstück mit einer Länge von 7cm.
7 SI Basisgrößen und ihre Basiseinheiten
Die 7 Basisgrößen sind von einander unabhängige Grundgrößen der Physik. SI steht für „Système international d’unités“, das ist das am weitesten verbreitete internationale Einheitensystem.
Basisgröße, Formelzeichen | Basiseinheit | Einheitszeichen |
Länge l | Meter | m |
Masse m | Kilogramm | kg |
Zeit t | Sekunde | s |
elektrische Stromstärke I | Ampere | A |
Temperatur T | Kelvin | K |
Stoffmenge n | Mol | mol |
Lichtstärke Iv | Candela | cd |
SI abgeleitete Größen und ihre Einheiten
Während die 7 Basisgrößen von einander unabhängig sind, haben daraus zusammengesetzte, sogenannte abgeleitete Größen entsprechende abgeleitete Einheiten. Wichtige abgeleitete Größen und ihre Einheiten sind
Abgeleitete physikalische Größe, Formelzeichen | Einheit | Einheitszeichen |
Fläche A | Quadratmeter | m² |
Volumen V | Kubikmeter | m³ |
Geschwindigkeit v | Kilometer pro Stunde | m/s |
Beschleunigung a | Meter pro Sekundenquadrat | m/s² |
mechanische Kraft F | Newton | N |
Frequenz f | Herz | Hz |
Arbeit W, Energie E, Wärmemenge Q | Joule | J |
mechanische Leistung P | Watt | W |
Druck p | Pascal | Pa |
Lichtstrom Φ | Lumen | lm |
Beleuchtungsstärke E | Lux | lx |
SI abgeleitete Größen und ihre Einheiten aus der Elektrotechnik
Während die 7 Basisgrößen von einander unabhängig sind, haben daraus zusammengesetzte, sogenannte abgeleitete Größen entsprechende abgeleitete Einheiten. Wichtige abgeleitete Größen und ihre Einheiten aus dem Gebiet der Elektrotechnik sind
Abgeleitete elektrotechnische Größe, Formelzeichen | Einheit | Einheitszeichen |
magnetische Feldstärke \({\overrightarrow H }\) | Ampere pro m | A/m |
elektrische Feldstärke \({\overrightarrow E }\) | Volt pro m | V/m |
Spannung U | Volt | V |
Arbeit W, Energie E | Joule | J |
elektrische Ladung Q | Coulomb | C |
elektrische Leistung P | Watt | W |
ohmscher Widerstand R | Ohm | \(\Omega\) |
elektrische Kapazität C | Farad | F |
magnetische Induktivität L | Henry | H |
magnetischer Fluss \(\Phi\) | Weber | Wb |
magnetische Flussdichte \({\overrightarrow B }\) | Tesla | T |
Physikalische Größen - Auswahl und Definition gemäß Formelsammlung AHS
Größe | Formel | Formel | Formel |
Dichte ρ | \(\rho = \dfrac{m}{v}\) | ||
Leistung P | \(P = \dfrac{{\Delta E}}{{\Delta t}}\) | \(P = \dfrac{{\Delta W}}{{\Delta t}}\) | \(P = \dfrac{{dW\left( t \right)}}{{dt}}\) |
Kraft F | \(F = m \cdot a\) | \(F = \dfrac{{dW}}{{ds}}\) | |
Arbeit | \(W = F \cdot s\) | \(W = \int {F\left( s \right)\,\,\operatorname{ds} }\) | |
kinetische Energie Ekin | \({E_{kin}} = \dfrac{{m \cdot {v^2}}}{2}\) | ||
potentielle Energie Epot | \({E_{pot}} = m \cdot g \cdot h\) | ||
gleichförmige geradlinige Bewegung v(t) | \(v = \dfrac{s}{t}\) | \(v = \dfrac{{ds}}{{dt}}\) | \(v\left( t \right) = s'\left( t \right) = \dfrac{{ds}}{{dt}}\) |
gleichmäßig beschleunigte geradlinige Bewegung a(t) | \(v = a \cdot t + {v_0}\) | \(a = \dfrac{{dv}}{{dt}}\) | \(a\left( t \right) = v'\left( t \right) = \dfrac{{dv}}{{dt}} = s''\left( t \right) = \dfrac{{{d^2}s}}{{d{t^2}}}\) |
Bewegungsvorgänge - Auswahl und Definition gemäß Formelsammlung BHS
Größe | Formel |
Zeit t | \(t\) |
Weg-Zeit-Funktion s(t) | \(s\left( t \right) = \int {v\left( t \right)} \,\,dt\) |
Geschwindigkeit-Zeit-Funktion v(t) | \(v(t) = s'\left( t \right) = \mathop s\limits^ \bullet = \dfrac{{ds}}{{dt}} = \int {a\left( t \right)} \,\,dt\) |
Beschleunigung-Zeit-Funktion a(t) | \(a\left( t \right) = s''\left( t \right) = \mathop s\limits^{ \bullet \bullet } = \dfrac{{{d^2}s}}{{d{t^2}}} = v'\left( t \right) = \mathop v\limits^ \bullet = \dfrac{{dv}}{{dt}}\) |
Anmerkung zur auf Universitäten üblichen Kurzschreibweise von "Ableitungen nach der Zeit": Die Notation mit einem "Punkt" über dem Formelzeichen bedeutet, dass es sich um die 1 Ableitung nach der Zeit handelt. Zwei "Punkte" bedeuten, dass es sich um die 2. Ableitung nach der Zeit handelt.
Größen und ihre Einheiten - Auswahl gemäß Formelsammlung AHS
Größe | Einheit | Symbol | Beziehung zu SI-Einheiten |
Temperatur T | Grad Celsius Grad Kelvin |
°C K |
\(\Delta t = \Delta T\) |
Frequenz f | Hertz | Hz | \(1 \cdot Hz = 1 \cdot {s^{ - 1}}\) |
Arbeit W, Energie E, Wärmemenge Q | Joule | J | \(1 \cdot J = 1 \cdot kg \cdot {m^{2}}\cdot s^{ - 2}\) |
Kraft F | Newton | N | \(1 \cdot N = 1 \cdot kg \cdot m \cdot {s^{ - 2}}\) |
Drehmoment M | Newtonmeter | \(N \cdot m\) | \(1 \cdot N \cdot m = 1 \cdot kg \cdot {m^2} \cdot {s^{ - 2}}\) |
Elektrischer Widerstand R | Ohm | \(\Omega\) | \(1 \cdot \Omega = 1 \cdot V \cdot {A^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {A^{ - 2}} \cdot {s^{ - 3}}\) |
Druck p | Pascal | Pa | \(1 \cdot Pa = 1 \cdot N \cdot {m^{ - 2}} = 1 \cdot kg \cdot {m^{ - 1}} \cdot {s^{ - 2}}\) |
Elektrische Stromstärke I | Ampere | A | \(1 \cdot A = 1 \cdot C \cdot {s^{ - 1}}\) |
Elektrische Spannung U | Volt | V | \(1 \cdot V = 1 \cdot J \cdot {C^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {A^{ - 1}} \cdot {s^{ - 3}}\) |
Leistung P | Watt | W | \(1 \cdot W = 1 \cdot J \cdot {s^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {s^{ - 3}}\) |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1621
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Radfahrer
Zwei Radfahrer A und B fahren mit Elektrofahrrädern vom gleichen Startpunkt aus mit jeweils konstanter Geschwindigkeit auf einer geradlinigen Straße in dieselbe Richtung. In der nachstehenden Abbildung sind die Graphen der Funktionen sA und sB dargestellt, die den von den Radfahrern zurückgelegten Weg in Abhängigkeit von der Fahrzeit beschreiben. Die markierten Punkte haben die Koordinaten (0 | 0), (2 | 0) bzw. (8 | 2 400).
Aufgabenstellung:
Kreuzen Sie die beiden Aussagen an, die der obigen Abbildung entnommen werden können!
- Aussage 1: Der Radfahrer B startet zwei Minuten später als der Radfahrer A.
- Aussage 2: Die Geschwindigkeit des Radfahrers A betragt 200 Meter pro Minute.
- Aussage 3: Der Radfahrer B holt den Radfahrer A nach einer Fahrstrecke von 2,4 Kilometern ein.
- Aussage 4: Acht Minuten nach dem Start von Radfahrer B sind die beiden Radfahrer gleich weit vom Startpunkt entfernt.
- Aussage 5: Vier Minuten nach der Abfahrt des Radfahrers A sind die beiden Radfahrer 200 Meter voneinander entfernt.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4209
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fressverhalten von Furchenwalen - Aufgabe A_288
Teil a
Bei einem Beutestoß nehmen Furchenwale mit weit geöffnetem Maul eine große Menge Meerwasser und die darin enthaltene Beute auf. Forscher/innen beobachteten dieses Fressverhalten. Sie ermittelten mithilfe von Sensoren die Geschwindigkeit des Furchenwals bei einem Beutestoß, die Größe der Maulöffnung und das gesamte Wasservolumen, das dabei aufgenommen wird.
Die Geschwindigkeit eines Furchenwals bei einem Beutestoß, der insgesamt 20 s dauert, kann näherungsweise durch die Funktion v beschrieben werden (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Schätzen Sie die Länge s desjenigen Weges ab, der bei diesem Beutestoß zurückgelegt wird.
[1 Punkt]
Ein Forscher behauptet: „Der Furchenwal erreicht bei diesem Beutestoß eine maximale Geschwindigkeit von 15 km/h.“
2. Teilaufgabe - Bearbeitungszeit 5:40
Weisen Sie nach, dass diese Behauptung falsch ist.
[1 Punkt]
Aufgabe 1332
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 18. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Pflanzenwachstum
Die unten stehende Abbildung beschreibt näherungsweise das Wachstum einer schnellwüchsigen Pflanze. Sie zeigt die Wachstumsgeschwindigkeit v in Abhängigkeit von der Zeit t während eines Zeitraums von 60 Tagen.
Aufgabenstellung:
Geben Sie an, um wie viel cm die Pflanze in diesem Zeitraum insgesamt gewachsen ist!
Aufgabe 1093
AHS - 1_086 & Lehrstoff: AN 1.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Freier Fall
Für einen frei fallenden Körper ist eine Zeit-Weg-Funktion s(t) durch \(s\left( t \right) = \dfrac{g}{2} \cdot {t^2}\) gegeben. Dabei ist g ≈ 10 m/s2 die Fallbeschleunigung.
Aufgabenstellung:
Berechnen Sie die mittlere Geschwindigkeit in m/s im Zeitintervall [2; 4] Sekunden!
Aufgabe 1384
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 14. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Freier Fall
Der Weg, den ein Stein im freien Fall zurücklegt, kann näherungsweise durch den funktionalen Zusammenhang \(s\left( t \right) = 5 \cdot {t^2}\) beschrieben werden. Dabei wird die Fallzeit t in Sekunden und der in dieser Zeit zurückgelegte Weg s(t) in Metern gemessen.
Aufgabenstellung:
Berechnen Sie die Geschwindigkeit in Metern pro Sekunde (m/s), die der Stein nach einer Fallzeit von t = 2 Sekunden hat!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1153
AHS - 1_153 & Lehrstoff: FA 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zeit-Weg-Diagramm, Geschwindigkeiten
Das folgende Zeit-Weg-Diagramm stellt eine Bewegung dar. Der Weg wird in Metern (m), die Zeit in Sekunden (s) gemessen. Zur Beschreibung dieser Bewegung sind zudem verschiedene Geschwindigkeiten (vx) gegeben.
A | \({v_A} = 0\dfrac{m}{s}\) |
B | \({v_B} = 5\dfrac{m}{s}\) |
C | \({v_C} = 10\dfrac{m}{s}\) |
D | \({v_D} = 20\frac{m}{s}\) |
E | \({v_E} = 25\dfrac{m}{s}\) |
F | \({v_F} = 50\dfrac{m}{s}\) |
Aufgabenstellung:
Ordnen Sie jeweils jedem Zeitintervall jene Geschwindigkeit (aus A bis F) zu, die der Bewegung in diesem Intervall entspricht!
Deine Antwort | |
\(\left[ {0;1,5} \right]\) | |
\(\left[ {1,5;3} \right]\) | |
\(\left[ {3;4} \right]\) | |
\(\left[ {4;6} \right]\) |
Aufgabe 243
Geschwindigkeiten im Weg-Zeit Diagramm
Das nachfolgende Weg-Zeit Diagramm zeigt das Flugverhalten einer Stubenfliege.
Geschwindigkeit | |
\({v_{Fliege}} = 0\,\,m/s\) | A |
\({v_{Fliege}} = 1\,\,m/s\) | B |
\({v_{Fliege}} = 2\,\,m/s\) | C |
\({v_{Fliege}} = 2,5\,\,m/s\) | D |
\({v_{Fliege}} = 5\,\,m/s\) | E |
Aufgabenstellung:
Ordne jedem Zeitintervall jene Geschwindigkeit (aus A bis F) zu, die dem jeweiligen Flugverhalten der Fliege entspricht.
Zeitintervall | Deine Antwort |
\(\left[ {0;\,2} \right]\) | |
\( \left[ {2;\,3} \right]\) | |
\(\left[ {3;\,4,5} \right]\) | |
\(\left[ {4,5;\,10} \right]\) |
Aufgabe 4015
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-A-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Der Bodensee - Aufgabe A_243
Teil c
Sabine und Johanna fahren mit ihren Fahrrädern auf einem Radweg in Richtung Ludwigshafen (siehe nachstehende Skizze). Sabine startet im 12 Kilometer von Bregenz entfernten Lindau und fährt mit einer konstanten Geschwindigkeit von 15 km/h. Johanna startet mit einem E-Bike eine Stunde später in Bregenz und fährt mit einer konstanten Geschwindigkeit von 30 km/h.
Sabines Entfernung von Bregenz kann näherungsweise durch die lineare Funktion S beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie im obigen Diagramm den Graphen der linearen Funktion J ein, der Johannas Entfernung von Bregenz darstellt.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie ab, wie lange Johanna unterwegs ist, bis sie Sabine einholt.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Auch Otto fährt auf diesem Radweg von Bregenz in Richtung Ludwigshafen. Seine Geschwindigkeit kann durch eine Funktion v beschrieben werden.
t | Zeit in h |
v(t) | Geschwindigkeit zur Zeit t in km/h |
Beschreiben Sie unter Angabe der entsprechenden Einheit, was mit \(\int\limits_0^2 {v\left( t \right)} \,\,dt\) im gegebenen Sachzusammenhang berechnet wird.
[1 Punkt]
Aufgabe 4243
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winterliche Fahrbahnverhältnisse im Straßenverkehr - Aufgabe A_143
Teil a
Die Bremswege eines PKW auf schneebedeckter sowie auf trockener Fahrbahn werden miteinander verglichen. Das nachstehende Geschwindigkeit-Zeit-Diagramm zeigt modellhaft den zeitlichen Verlauf der Geschwindigkeit vS auf schneebedeckter Fahrbahn sowie den zeitlichen Verlauf der Geschwindigkeit vT auf trockener Fahrbahn vom Reagieren der Bremse bis zum Stillstand des PKW.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe des obigen Diagramms die (negative) Beschleunigung auf schneebedeckter Fahrbahn.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Der Bremsweg ist diejenige Strecke, die der PKW vom Reagieren der Bremse (t = 0) bis zum Stillstand zurücklegt. Veranschaulichen Sie im obigen Diagramm den Bremsweg auf trockener Fahrbahn.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe des obigen Diagramms die Differenz zwischen dem Bremsweg auf schneebedeckter Fahrbahn und dem Bremsweg auf trockener Fahrbahn.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4244
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winterliche Fahrbahnverhältnisse im Straßenverkehr - Aufgabe A_143
Teil b
Auf einer geraden Teststrecke werden mit zwei PKWs Bremsversuche durchgeführt. Die beiden PKWs fahren dabei in die gleiche Richtung. Während der ersten 5 s des Bremsvorgangs werden die Abstande der beiden PKWs zu einer Markierungslinie gemessen. Diese Abstande können näherungsweise durch die nachstehenden Funktionen beschrieben werden:
\(\begin{array}{l} {s_A}\left( t \right) = - 2 \cdot {t^2} + 20 \cdot t + 12\\ {s_B}\left( t \right) = - 2 \cdot {t^2} + 24 \cdot t \end{array}\)
mit:
- sA(t) ... Abstand des PKW A zur Markierungslinie zur Zeit t in m
- sB(t) ... Abstand des PKW B zur Markierungslinie zur Zeit t in m
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Abstand des PKW A zur Markierungslinie zur Zeit t = 2.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie, dass PKW A zur Zeit t = 3 langsamer als PKW B fährt.
[1 Punkt]
Aufgabe 4259
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Torre de Collserola - Aufgabe A_296
Teil c
Vom Fußpunkt des Torre de Collserola (Fernsehturm in Barcelona) bis zu dessen Aussichtsplattform führt ein Aufzug senkrecht nach oben. In der nachstehenden Abbildung ist die Geschwindigkeit-Zeit-Funktion v bei einer Aufzugsfahrt modellhaft dargestellt.
Im Zeitintervall [0; 30] gilt für die Geschwindigkeit-Zeit-Funktion v:
\(v\left( t \right) = - \dfrac{1}{{11250}} \cdot {t^3} + \dfrac{1}{{250}} \cdot {t^2}{\rm{ mit }}0 \le t \le 30\)
1. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie die Länge des Weges, der bei dieser Aufzugsfahrt insgesamt zurückgelegt wird.
[2 Punkte]
Aufgabe 4299
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2016 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Section-Control - Aufgabe_A226
Section-Control bezeichnet ein System zur Überwachung der Einhaltung von Tempolimits im Straßenverkehr. Dabei wird nicht die Geschwindigkeit an einem bestimmten Punkt gemessen, sondern die mittlere Geschwindigkeit über eine längere Strecke ermittelt.
Teil b
Im nachstehenden Weg-Zeit-Diagramm ist die Fahrt eines Fahrzeuges in einem überprüften Bereich dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die mittlere Geschwindigkeit des Fahrzeugs auf der ersten Weghälfte.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie, dass die mittlere Geschwindigkeit auf der ersten Weghälfte kleiner als die mittlere Geschwindigkeit auf der zweiten Weghälfte ist.
[1 Punkt]