Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Flaches Universum

Flaches Universum

Das flache Universum dehnt sich asymptotisch bis zu einer endlichen Größe aus, Dh es existiert im Universum genau so viel Masse, dass deren Gravitaiton die Expansion bei einer bestimmten Ausdehnung abstopt.

Hier findest du folgende Inhalte

1
Formeln
    Formeln
    Wissenspfad

    Einsteinsche Feldgleichung der ART

    Die Einsteinschen Feldgleichungen, auch Gravitationsgleichungen der ART stellen einen Zusammenhang zwischen dem Einstein-Tensor G mit den Krümmungseigenschaften der Raumzeit und dem Energie-Impuls-Tensor T her. Mit anderen Worten handelt es sich um die gegenseitige Beeinflussung von der Energie-Impulsverteilung im Universum mit der Geometrie der Raumzeit.


    Einsteinsche Feldgleichung ohne kosmologischer Konstante:

    \({G_{\mu \nu }} = \dfrac{{8\pi G}}{{{c^4}}} \cdot {T_{\mu \nu }} = {R_{\mu \nu }} - \dfrac{1}{2} \cdot R \cdot {g_{\mu \nu }}\)

    \({G_{\mu \nu }}\) Einstein-Tensor
    \({T_{\mu \nu }}\) Energie Impuls Tensor
    \({R_{\mu \nu }}\) Ricci-Krümmungstensor
    R Ricci-Krümmungsskalar
    \({g_{\mu \nu }}\) Metrik, bzw. Metrischer Tensor
    G

    Newtonsche Gravitationskonstante  \({\text{G = 6}}{\text{,67}} \cdot {\text{1}}{{\text{0}}^{ - 11}}\dfrac{{{m^3}}}{{kg \cdot {s^2}}}\)


    Einsteinsche Feldgleichung mit kosmologischer Konstante:

    \({G_{\mu \nu }} = \dfrac{{8\pi G}}{{{c^4}}} \cdot {T_{\mu \nu }} + \Lambda {g_{\mu \nu }} = {R_{\mu \nu }} - \dfrac{1}{2} \cdot R \cdot {g_{\mu \nu }}\)

    \(\Lambda \)

    kosmologische Konstante, sollte ursprünglich ein statisches Universum erzwingen,
    beschreibt heute die beschleunigte Expansion vom Kosmos zufolge Dunkler Energie

    \(\Lambda \approx 1 \cdot {10^{ - 52}} \cdot \dfrac{1}{{{m^2}}}\)

    man kann sie sich am besten als einen Druck vorstellen, der Masse auseinandertreibt.

    T enthält die lokale Massendichte bzw. über E=mc2 die Energiedichte und charakterisiert damit die gravitationsrelevanten Eigenschaften der Materie. Zur Aufrechterhaltung von Energie- und Impulserhaltungsatz muss \(\nabla {T_{\mu \nu }} = 0\) die Divergenz vom Energie-Impulstensor bei festen RaumZeit-Koordianten null sein.

    Die linke Seite der Gleichung beschreibt die Raumzeit, die rechte Seite der Gleichung beschreibt die Masse, die die Krümmung der Raumzeit bedingt. Eine triviale Schlussfolgerung: Wo es weder Masse noch Energie (gemäß E=mc2) gibt, dort gibt es auch keinen Raum und keine Zeit! D.h. für den Urknall, dass sich nicht die Materie in ein leeres Universum hinein ausbreitet, sondern dass sich das Universum selbst, und zwar nur dort wo es Materie gibt, ausdehnt.

    Die einfache Form obiger Gleichung täuscht! Komplett ausformuliert, besteht sie aus mehreren nichtlinearen, gekoppelten, partiellen Differentialgleichungen, für die es keinen vollständigen Satz an Lösungen gibt. Immer wieder werden daher neue Lösungen für Spezialfälle gefunden.


    Lösungen der Einsteinschen Feldgleichung

    Alle vier hier beschriebenen Lösungen der Einsteinschen Feldgleichungen beschreiben „Schwarze Löcher“ und sie vereinfachen die ursprüngliche Tensorgleichung:

    • Die „Schwarzschild Lösung“ (1916) geht von einem ungeladenen, nicht rotierenden, punktförmigen schwarzen Loch aus; Ein Schwarzschild-Loch hat nur eine einzige Eigenschaft: Masse
    • Die „Reissner-Nordstrom-Lösung“ (1918) geht von einem elektrisch geladenen, nicht rotierenden, punktförmigen schwarzen Loch aus; Ein Reissner-Nordstrom-Loch hat 2 Eigenschaften: Masse und Ladung
    • Die „Kerr-Lösung“ (1963) lässt bereits eine Rotation des nicht geladenen, ringförmigen schwarzen Lochs zu; Ein Kerr-Loch hat 2 Eigenschaften: Masse und Drehimpuls
    • Die „Kerr-Newmann-Lösung“ (1965) ist die allgemeinste Lösung, lässt sie doch elektrische Ladung und Rotation zu; Ein Kerr-Newmann-Loch hat 3 Eigenschaften: Masse, Ladung und Drehimpuls

    In der Praxis der Astrophysik spielt die Ladung aber keine Rolle, da Ausgleichsströme im Plasma diese Ladungen neutralisieren würden. Es bleiben also die Schwarzschild- und Kerr-Löcher über, und die besitzen maximal 2 Eigenschaften: Masse und Drehimpuls.

    Linearisiert man die Feldgleichungen, so erhält man die einfacheren Wellengleichungen.


    Kosmologische Konstante \(\Lambda \)

    Einstein hatte die Vorstellung eines statischen Universums, welches sich nicht ausdehnt. Um das in seiner Feldgleichung mathematisch zu erzwingen, führte er den „Lambda-Term“ also die kosmologische Konstante ein. Die kosmologische Konstante steht dabei für eine Art von Vakuumenergie. Die kosmologische Konstante hat heute die Bedeutung einer Energiedichte vom Vakuum.

    \(\eqalign{ & {G_{\mu \nu }} = \dfrac{{8\pi G}}{{{c^4}}} \cdot {T_{\mu \nu }} + \Lambda {g_{\mu \nu }} \cr & {R_{\mu \nu }} - \dfrac{1}{2} \cdot R \cdot {g_{\mu \nu }} = \dfrac{{8\pi G}}{{{c^4}}} \cdot {T_{\mu \nu }} + \Lambda {g_{\mu \nu }} \cr} \)

    • Eine negative kosmologische Konstante / Lambda verstärkt die Gravitation, darauf deutet derzeit nichts hin, im Gegenteil:
    • ein positives Lambda wirkt in Form einer „Anti-Gravitation“ also so, wie die dunkle Energie. Mit einem kleinen positiven Wert erhält man ein exponentiell expandierendes Universum. Man spricht vom Einsten-de Sitter Model.

    Die Hubble Konstante H0

    Nach der Entdeckung des Hubble-Effekts (1929), demzufolge sich das Universum gemäß der Hubble Konstante um 67..75 km pro Sekunde pro Megaparsec (67..75 km/s pro 3,3 Millionen Lichtjahre Entfernung) ausdehnt, verwarf Einstein die kosmologische Konstante und bezeichnete sie als seine „größte Eselei“. 

    1985 haben Messungen der kosmischen Expansion mittels Ia-Supanovae („Standardkerzen“) zudem gezeigt, dass sich die Hubblesche Ausdehnung des Universums nicht wie erwartet unter der Wirkung der Gravitation verlangsamt, sonder im Gegenteil, beschleunigt. Dafür macht man die sogenannte dunkle Energie verantwortlich, die entgegengesetzt zur Schwerkraft wirkt und die Massen im Universum immer stärker auseinandertreibt.

    Eine exakte Bestimmung der Hubble Konstanten wäre von entscheidender Bedeutung für das Ausmaß der Beschleunigung der kosmischen Expansion. 


    Friedmann Gleichungen

    Die beiden Friedmann Gleichungen resultieren aus eine Vereinfachung der Tensorgleichung aus der Allgemeinen Relativitätstheorie unter der Annahme eines homogenen (gleichmäßig aufgebauten) und isotropen (richtungsunabhängigen) Universums. Ein isotropes Universum hat in alle Richtungen die gleichen Eigenschaften. Die Materie, die in den Planeten, Sternen und Galaxien punktuell enthalten ist und deren Zwischenräume die von Vakuum erfüllt sind, denkt man sich als gleichmäßig über das Universum verschmiert. Die Friedmann Gleichungen beschreiben die Entwicklung des Universums mit fortschreitender Zeit.


    1. Friedmann Gleichung mit kosmologischer Konstante:

    Die erste Friedmann-Gleichung beschreibt den Zusammenhang zwischen der Expansionsrate des Universums, der Energiedichte im Universum, der Krümmung des Raums und eines Skalenfaktors. Hinzu kommt der Druck zufolge der kosmologischen Konstante.

    \(\eqalign{ & {H^2}\left( t \right) = {\left( {\dfrac{{\mathop a\limits^ \cdot }}{a}} \right)^2} = \dfrac{{8\pi G}}{3} \cdot \rho - \dfrac{{k{c^2}}}{{{a^2}}} + \dfrac{{\Lambda {c^2}}}{3} \cr & mit\,\,...\,\,\Omega - 1 = \dfrac{k}{{{H^2} \cdot {a^2}}} \cr} \)

    \(\Omega = \dfrac{{8\pi G\rho }}{{3{H^2}}}\)

    \(\Omega\) Dichteparameter, bezeichnet die Dichte von Materie und Energie im Universum. Er enstpicht dem Verhältniss von tatsächlich vorhandener Energiedichte zu genau jener Energiedichte die für ein statisches Universum erforderlich wäre.
    k Krümmungsparameter (-1, 0, +1), ist mit der Gesamtenergiedichte des Universums verknüpft.
    \(\Lambda\) kosmologische Konstante "Lambda" (negativ, 0, positiv), übt "Druck" auf Materie aus und trägt zur Ausdehnung des Universums bei. 
    H(t) Hubbleparameter; Beschreibt als Hubblekonstante die jeweilige Expansionsrate des Universums, liegt derzeit zwischen 67 und 75 km pro Sekunde pro Megaparsec.
    c Lichtgeschwindigkeit c=299 792 458 m/s

     


    2. Friedmann Gleichung mit kosmologischer Konstante:

    Die zweite Friedmann-Gleichung beschreibt, wie die Beschleunigung der Expansion des Universums von der Energiedichte und dem Druck im Inneren des Universums abhängt. Hinzu kommt der Druck zufolge der dunklen Energie repräsentiert durch die kosmologischen Konstante.

    \(\eqalign{ & \mathop H\limits^ \cdot + {H^2} = \dfrac{{\mathop a\limits^{ \cdot \cdot } }}{a} = - \dfrac{{4\pi G}}{{3{c^2}}}\left( {\rho {c^2} + 3p} \right) + \dfrac{{\Lambda {c^2}}}{3} \cr & H\left( t \right) = \dfrac{{\mathop a\limits^ \cdot }}{a} \cr}\)

    a(t)

    Kosmischer Skalenfaktor. Wenn der Skalenfaktor a(t) wächst, bedeutet dies, dass das Universum älter wird. Der Skalenfaktor beeinflusst die räumliche Geometrie des Universums

    \({\mathop a\limits^{ \cdot \cdot } }\) Die 2. Ableitung des Skalenfaktors nach der Zeit beschreibt die Beschleunigung (oder Verzögerung) der Expansion des Universums
    \(\rho\) Energiedichte des Universums, setz sich aus  Materie, Strahlung und dunkler Energie zusammen
    p Druck des Universums

     

    Die Friedmann Gleichungen sind Differentialgleichungen - da sie den Skalenfaktor a sowie dessen 1. und 2. zeitliche Ableitung enthalten - bei denen man folgende 3 Fälle an Hand des Krümmungsparamters k unterscheiden kann:

    • k = -1: offenes Universum: Das Universum expandiert ohne Schranke, da die Gravitation nicht in der Lage ist die Expansion zu bremsen. Die Sterne erkalten und die Galaxien, ja sogar die Schwarzen Löcher, verdampfen. Das Universum erreicht den absoluten Nullpunkt der Temperaturskala und stirbt den Kältetod.
    • k = 0: flaches Universum: Das Universum dehnt sich asymptotisch bis zu einer endlichen Größe aus, D.h. es existiert im Universum genau so viel Masse, dass deren Gravitation die Expansion bei einer bestimmten Ausdehnung abstoppt. Das Universum stirbt den Kältetod.
    • k = +1: geschlossenes Universum: Das Universum enthält so viel Masse, dass unter der Wirkung der Gravitation die Ausdehnung zum Stillstand kommt und danach kollabiert das Universum im „Big Crunch“

     


    Zusammenhang Krümmungsparameter k und kosmologische Konstante \(\Lambda\)

    Der Krümmungsparameter k und die kosmologische Konstante Lambda machen einerseits Aussagen über die Krümmung des Universums und andererseits über die Dynamik der Ausbreitung des Universums. Sie sind abhängig von der Dichte an Materie und von der Dichte der dunklen Energie im Universum. Sie bestimmen ob sich das Universum in Richtung Expansion, Stagnation oder Kontraktion entwickelt. 


    Zusammenhang zwischen dunkler Energie bzw. zugehöriger kosmologischer Konstante und Vakuumenergiedichte

    Die dunkle Energie ist ein Begriff der Gravitationstheorie, während die Vakuumenergiedichte ein Ausdruck der Quantenfeldtheorie ist, wodurch die beiden Theorien in einen Zusammenhang gesetzt werden können. Die dunkle Energie kann dann nämlich als eine Art der Vakuumenergiedichte interpretiert werden.

    • Die dunkle Energie wird postuliert um die messbare beschleunigte Expansion des Universums zufolge ihrer negativen Gravitationswirkung zu erklären. Sie wird dort durch die kosmologische Konstante \(\Lambda\) repräsentiert und findet sich sowohl in der einsteinschen Feldgleichung der ART als auch in den beiden Friedmann-Gleichungen wieder.
    • Die Vakuumenergiedichte ist jene - von Null ungleiche - Energiemenge, die dem leere Raum zugeschrieben wird. Sie ist die niedrigste Energiedichte eines quantenmechanischen Feldes. Sie spielt bei der Theorie des inflationären Universums zusammen mit der Energie des Higgsfeldes eine Rolle. Sie dominiert den Zeitraum von 10-36 s bis 10-34 s nach dem Urknall, während der sich das Universum exponentiell um das ca. 1026 -fache ausgedehnt haben könnte. Nach diesem Zeitraum dehnt sich das nunmehr strahlungsdominierte Universum zufolge der Friedmann-Gleichungen aus.

     

    Kosmologische Konstante
    statisches Universum
    Hubble Effekt
    Dunkle Energie
    Antigravitation
    Einstein de Sitter Model
    Schwarzschild Lösung der Einsteinschen Feldgleichung
    Reissner Nordstrom Lösung der Einsteinschen Feldgleichung
    Kerr Lösung der einsteinschen Feldgleichung
    Kerr Newmann Lösung der einsteinschen Feldgleichung
    Schwarzes Loch
    Einsteinsche Feldgleichung der ART
    Lösungen der Einsteinschen Feldgleichung
    Friedmann Gleichungen
    Offenes Universum
    Flaches Universum
    Geschlossenes Universum
    Vierdimensionale Raumzeit
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    Bild
    Illustration Buch mit Cocktail 1050 x 450
    Startseite

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Tablet
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH