Prüfungsteil A - Geometrie
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 6013
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Die Gerade g verläuft durch die Punkte A(0 |1| 2) und B(2 | 5 | 6).
1. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie, dass die Punkte A und B den Abstand 6 haben.
Die Punkte C und D liegen auf g und haben von A jeweils den Abstand 12.
2. Teilaufgabe a.2) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Koordinaten von C und D.
Die Punkte A, B und E(1| 2 | 5) sollen mit einem weiteren Punkt die Eckpunkte eines Parallelogramms bilden.
3. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Für die Lage des vierten Eckpunkts gibt es mehrere Möglichkeiten. Geben Sie für zwei dieser Möglichkeiten die Koordinaten des vierten Eckpunkts an.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6014
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Betrachtet wird die Pyramide ABCDS mit A(0 | 0 | 0), B(4 | 4 | 2) , C(8 | 0 | 2), D(4 | -4 | 0) und S(1|1| -4) . Die Grundfläche ABCD ist ein Parallelogramm.
Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Weisen Sie nach, dass das Parallelogramm ABCD ein Rechteck ist.
Die Kante \(\left[ {AS} \right]\) senkrecht auf der Grundfläche ABCD. Der Flächeninhalt der Grundfläche beträgt \(24 \cdot \sqrt 2 \)
Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Ermitteln Sie das Volumen der Pyramide.
Aufgabe 6015
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Nachfolgende Abbildung zeigt die Pyramide ABCDS mit quadratischer Grundfläche ABCD. Der Pyramide ist eine Stufenpyramide einbeschrieben, die aus Würfeln mit der Kantenlänge 1 besteht.
1. Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Geben Sie das Volumen der Stufenpyramide und die Höhe der Pyramide ABCDS an.
2. Teilaufgabe b.1) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie unter Verwendung eines geeignet gewählten kartesischen Koordinatensystems eine Gleichung für die Gerade, die durch die Punkte B und S verläuft.
3. Teilaufgabe b.1) 2 BE - Bearbeitungszeit: 4:40
Zeichnen Sie das gewählte Koordinatensystem in die Abbildung ein.
Aufgabe 6047
Abitur 2016 Gymnasium Bayern - Prüfungsteil A - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Betrachtet wird der abgebildete Würfel ABCDEFGH. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen Koordinatensystem die folgenden Koordinaten:
1. Teilaufgabe a1) 1 BE - Bearbeitungszeit: 2:20
Zeichnen Sie in die Abbildung die Koordinatenachsen ein und bezeichnen Sie diese.
2. Teilaufgabe a1) 1 BE - Bearbeitungszeit: 2:20
Geben Sie die Koordinaten des Punkts A an.
Der Punkt P liegt auf der Kante [FB] des Würfels und hat vom Punkt H den Abstand 3.
3. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Berechnen Sie die Koordinaten des Punkts P.
Aufgabe 6048
Abitur 2016 Gymnasium Bayern - Prüfungsteil A - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Gegeben sind die Punkte \(A\left( { - 2\left| {1\left| 4 \right.} \right.} \right){\text{ und }}B\left( { - 4\left| {0\left| 6 \right.} \right.} \right)\)
1. Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Koordinaten des Punkts C so, dass gilt: \(\overrightarrow {CA} = 2 \cdot \overrightarrow {AB} \)
Durch die Punkte A und B verläuft die Gerade g. Betrachtet werden Geraden, für welche die Bedingungen I und II gelten:
- I Jede dieser Geraden schneidet die Gerade g orthogonal.
- II Der Abstand jeder dieser Geraden vom Punkt A beträgt 3.
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Ermitteln Sie eine Gleichung für eine dieser Geraden.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6049
Abitur 2016 Gymnasium Bayern - Prüfungsteil A - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Gegeben sind die Ebene \(E:2 \cdot {x_1} + {x_2} + 2 \cdot {x_3} = 6\) sowie die Punkte \(P\left( {1\left| 0 \right.\left| 2 \right.} \right){\text{ und }}Q\left( {5\left| {2\left| 6 \right.} \right.} \right)\)
1. Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Zeigen Sie, dass die Gerade durch die Punkte P und Q senkrecht zur Ebene E verläuft.
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:20
Die Punkte P und Q liegen symmetrisch zu einer Ebene F. Ermitteln Sie eine Gleichung von F.