Prüfungsteil B - Stochastik
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 6024
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Der Marketingchef einer Handelskette plant eine Werbeaktion, bei der ein Kunde die Höhe des Rabatts bei seinem Einkauf durch zweimaliges Drehen an einem Glücksrad selbst bestimmen kann. Das Glücksrad hat zwei Sektoren, die mit den Zahlen 5 bzw. 2 beschriftet sind (vgl. Abbildung).
Der Rabatt in Prozent errechnet sich als Produkt der beiden Zahlen, die der Kunde bei zweimaligem Drehen am Glücksrad erzielt. Die Zufallsgröße X beschreibt die Höhe dieses Rabatts in Prozent, kann also die Werte 4, 10 oder 25 annehmen. Die Zahl 5 wird beim Drehen des Glücksrads mit der Wahrscheinlichkeit p erzielt. Vereinfachend soll davon ausgegangen werden, dass jeder Kunde genau einen Einkauf tätigt und auch tatsächlich am Glücksrad dreht.
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Ermitteln Sie mithilfe eines Baumdiagramms die Wahrscheinlichkeit dafür, dass ein Kunde bei seinem Einkauf einen Rabatt von 10% erhält.
(Ergebnis: \(2 \cdot p - 2 \cdot {p^2}\) )
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Zeigen Sie, dass für den Erwartungswert E(X) der Zufallsgröße X gilt:
\(E\left( X \right) = 9 \cdot {p^2} + 12 \cdot p + 4\)
Die Geschäftsführung will im Mittel für einen Einkauf einen Rabatt von 16% gewähren.
3. Teilaufgabe c.1) 3 BE - Bearbeitungszeit: 7:00
Berechnen Sie für diese Vorgabe den Wert der Wahrscheinlichkeit p.
Berechnen Sie für diese Vorgabe den zugehörigen Mittelpunktswinkel des Sektors mit der Zahl 5.
Die Wahrscheinlichkeit, dass ein Kunde bei seinem Einkauf den niedrigsten Rabatt erhält, beträgt 1/9.
4. Teilaufgabe d) 4 BE - Bearbeitungszeit: 9:20
Bestimmen Sie, wie viele Kunden mindestens an dem Glücksrad drehen müssen, damit mit einer Wahrscheinlichkeit von mehr als 99 % mindestens einer der Kunden den niedrigsten Rabatt erhält.
Es drehen 180 Kunden am Glücksrad.
Teilaufgabe e) 2 BE - Bearbeitungszeit: 4:40
Berechnen Sie, mit welcher Wahrscheinlichkeit mindestens 10 und höchstens 25 dieser Kunden den niedrigsten Rabatt für ihren Einkauf erhalten.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6025
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Eine der Filialen der Handelskette befindet sich in einem Einkaufszentrum, das zu Werbezwecken die Erstellung einer Smartphone App in Auftrag geben will. Diese App soll die Kunden beim Betreten des Einkaufszentrums über aktuelle Angebote und Rabattaktionen der beteiligten Geschäfte informieren . Da dies mit Kosten verbunden ist, will der Finanzchef der Handelskette einer Beteiligung an der App nur zustimmen, wenn mindestens 15% der Kunden der Filiale bereit sind, diese App zu nutzen. Der Marketingchef warnt jedoch davor, auf eine Beteiligung an der App zu verzichten, da dies zu einem Imageverlust führen könnte.
Um zu einer Entscheidung zu gelangen, will die Geschäftsführung der Handelskette eine der beiden folgenden Nullhypothesen auf der Basis einer Befragung von 200 Kunden auf einem Signifikanzniveau von 10% testen:
- I „Weniger als 15% der Kunden sind bereit, die App zu nutzen.“
- II „Mindestens 15% der Kunden sind bereit, die App zu nutzen.“
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Nach Abwägung der möglichen Folgen, die der Finanzchef und der Marketingchef aufgezeigt haben, wählt die Geschäftsführung für den Test die Nullhypothese II . Bestimmen Sie die zugehörige Entscheidungsregel.
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Entscheiden Sie, ob bei der Abwägung, die zur Wahl der Nullhypothese II führte, die Befürchtung eines Imageverlusts oder die Kostenfrage als schwerwiegender erachtet wurde. Erläutern Sie Ihre Entscheidung.
Aufgabe 6026
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Die beiden Diagramme zeigen für die Bevölkerungsgruppe der über 14-Jährigen in Deutschland Daten zur Altersstruktur und zum Besitz von Mobiltelefonen.
Diagramm 1:
Diagramm 2:
Aus den über 14-Jährigen in Deutschland wird eine Person zufällig ausgewählt. Betrachtet werden folgende Ereignisse:
- Ereignis M: „Die Person besitzt ein Mobiltelefon.“
- Ereignis S: „Die Person ist 65 Jahre oder älter.“
- Ereignis E: „Mindestens eines der Ereignisse M und S tritt ein.“
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Geben Sie an, welche zwei der folgenden Mengen 1 bis 6 jeweils das Ereignis E beschreiben.
- Menge 1: \(M \cap S\)
- Menge 2: \(M \cup S\)
- Menge 3: \(\overline {M \cup S} \)
- Menge 4: \(\left( {M \cap \overline S } \right) \cup \left( {\overline M \cap S} \right) \cup \left( {\overline M \cap \overline S } \right)\)
- Menge 5: \(\left( {M \cap S} \right) \cup \left( {M \cap \overline S } \right) \cup \left( {\overline M \cap S} \right)\)
- Menge 6: \(\overline {M \cap S} \)
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Entscheiden Sie anhand geeigneter Terme und auf der Grundlage der vorliegenden Daten, welche der beiden folgenden Wahrscheinlichkeiten größer ist. Begründen Sie Ihre Entscheidung.
- p1 ist die Wahrscheinlichkeit dafür, dass die ausgewählte Person ein Mobiltelefon besitzt, wenn bekannt ist, dass sie 65 Jahre oder älter ist.
- p2 ist die Wahrscheinlichkeit dafür, dass die ausgewählte Person 65 Jahre oder älter ist, wenn bekannt ist, dass sie ein Mobiltelefon besitzt.
3. Teilaufgabe c.1) 4 BE - Bearbeitungszeit: 9:20
Erstellen Sie zu dem beschriebenen Sachverhalt für den Fall, dass das Ereignis E mit einer Wahrscheinlichkeit von 98% eintritt, eine vollständig ausgefüllte Vierfeldertafel
4. Teilaufgabe c.2) 1 BE - Bearbeitungszeit: 2:20
Bestimmen Sie für diesen Fall die Wahrscheinlichkeit PS(M) .
5. Teilaufgabe d) 1 BE - Bearbeitungszeit: 2:20
Schraffieren Sie in der Abbildung die Fläche, die dem Ereignis \(\overline M \cap S\) entspricht.
Aufgabe 6027
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Zwei Drittel der Senioren in Deutschland besitzen ein Mobiltelefon. Bei einer Talkshow zum Thema „Chancen und Risiken der digitalen Welt“ sitzen 30 Senioren im Publikum.
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter 30 zufällig ausgewählten Senioren in Deutschland mindestens 17 und höchstens 23 ein Mobiltelefon besitzen.
Von den 30 Senioren im Publikum besitzen 24 ein Mobiltelefon. Im Verlauf der Sendung werden drei der Senioren aus dem Publikum zufällig ausgewählt und nach ihrer Meinung befragt.
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Bestimmen Sie die Wahrscheinlichkeit dafür, dass genau zwei dieser drei Senioren ein Mobiltelefon besitzen.
Aufgabe 6028
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Eine Handelskette hat noch zahlreiche Smartphones des Modells Y3 auf Lager, als der Hersteller das Nachfolgemodell Y4 auf den Markt bringt. Der Einkaufspreis für das neue Y4 beträgt 300 €, während die Handelskette für das Vorgängermodell Y3 im Einkauf nur 250 € bezahlen musste. Um die Lagerbestände noch zu verkaufen, bietet die Handelskette ab dem Verkaufsstart des Y4 die Smartphones des Typs Y3 für je 199 € an.
Aufgrund früherer Erfahrungen geht die Handelskette davon aus, dass von den verkauften Smartphones der Modelle Y3 und Y4 trotz des Preisnachlasses nur 26% vom Typ Y3 sein werden.
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Berechnen Sie unter dieser Voraussetzung, zu welchem Preis die Handelskette das Y4 anbieten muss, damit sie voraussichtlich pro verkauftem Smartphone der Modelle Y3 und Y4 im Mittel 97€ mehr erhält, als sie beim Einkauf dafür zahlen musste.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6053
Abitur 2016 Gymnasium Bayern - Prüfungsteil B - Stochastik
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Ein Getränkehersteller führt eine Werbeaktion durch, um die Verkaufszahlen seiner Saftschorlen zu erhöhen. Bei 100 000 der für die Werbeaktion produzierten zwei Millionen Flaschen wird auf der Innenseite des Verschlusses eine Marke für einen Geldgewinn angebracht. Von den Gewinnmarken sind 12 000 jeweils 5 € wert, der Rest ist jeweils 1 € wert. Alle Flaschen der Werbeaktion werden zufällig auf Kästen verteilt. Im Folgenden werden nur Flaschen aus der Werbeaktion betrachtet.
1. Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Es wird eine Flasche geöffnet. Betrachtet werden folgende Ereignisse:
- A: „Der Verschluss enthält eine Gewinnmarke.“
- B: „Der Verschluss enthält eine Gewinnmarke im Wert von 1 €.“
Berechnen Sie die Wahrscheinlichkeiten P(A) und P(B).
2. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Es werden mehrere Flaschen geöffnet und für jede dieser Flaschen wird festgestellt, ob das Ereignis A eintritt. Begründen Sie, dass dieses Zufallsexperiment näherungsweise durch eine Bernoullikette beschrieben werden kann.
3. Teilaufgabe c) 2 BE - Bearbeitungszeit: 4:40
Im Folgenden gilt beim Öffnen einer Flasche stets P(a)=0,05 und P(B)=0,044 . Es werden nacheinander zehn Flaschen geöffnet. Berechnen Sie die Wahrscheinlichkeit dafür, dass sich erstmals in der fünften Flasche eine Gewinnmarke befindet.
4. Teilaufgabe d) 4 BE - Bearbeitungszeit: 9:20
Bestimmen Sie unter Zuhilfenahme des Tafelwerks, wie viele Flaschen man mindestens öffnen muss, um mit einer Wahrscheinlichkeit von mehr als 5% mindestens zwei Gewinnmarken zu finden.
5. Teilaufgabe e) 3 BE - Bearbeitungszeit: 7:00
Berechnen Sie den Gesamtwert der Gewinnmarken, die Kunden beim Öffnen der 20 Flaschen eines Kastens im Mittel in den Verschlüssen finden.
6. Teilaufgabe a) 7 BE - Bearbeitungszeit: 16:20
(Im Abitur als separate Aufgabe geführt)
Nachdem die zwei Millionen Flaschen verkauft sind, wird die Werbeaktion fortgesetzt. Der Getränkehersteller verspricht, dass weiterhin jede 20. Flasche eine Gewinnmarke enthält. Aufgrund von Kundenäußerungen vermutet der Filialleiter eines Getränkemarkts jedoch, dass der Anteil der Saftschorleflaschen mit einer Gewinnmarke im Verschluss nun geringer als 0,05 ist, und beschwert sich beim Getränkehersteller.
Der Getränkehersteller bietet ihm an, anhand von 200 zufällig ausgewählten Flaschen einen Signifikanztest für die Nullhypothese „Die Wahrscheinlichkeit dafür, in einer Flasche eine Gewinnmarke zu finden, beträgt mindestens 0,05“ auf einem Signifikanzniveau von 1% durchzuführen. Für den Fall, dass das Ergebnis des Tests im Ablehnungsbereich der Nullhypothese liegt, verspricht der Getränkehersteller, seine Abfüllanlage zu überprüfen und die Kosten für eine Sonderwerbeaktion des Getränkemarkts zu übernehmen.
Ermitteln Sie den Ablehnungsbereich der Nullhypothese und bestimmen Sie anschließend unter der Annahme, dass im Mittel nur 3% der Saftschorle- Flaschen eine Gewinnmarke enthalten, die Wahrscheinlichkeit dafür, dass der Getränkemarkt nicht in den Genuss einer kostenlosen Sonderwerbeaktion kommt.
Aufgabe 6054
Abitur 2016 Gymnasium Bayern - Prüfungsteil B - Stochastik
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Nach einem Bericht zur Allergieforschung aus dem Jahr 2008 litt damals in Deutschland jeder vierte bis fünfte Einwohner an einer Allergie. 41 % aller Allergiker reagierten allergisch auf Tierhaare.
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Kann aus diesen Aussagen gefolgert werden, dass 2008 mindestens 10 % der Einwohner Deutschlands auf Tierhaare allergisch reagierten? Begründen Sie Ihre Antwort.
Aufgabe 6055
Abitur 2016 Gymnasium Bayern - Prüfungsteil B - Stochastik
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Nach einer aktuellen Erhebung leiden 25 % der Einwohner Deutschlands an einer Allergie. Aus den Einwohnern Deutschlands werden n Personen zufällig ausgewählt.
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Bestimmen Sie, wie groß n mindestens sein muss, damit mit einer Wahrscheinlichkeit von mehr als 99 % mindestens eine der ausgewählten Personen an einer Allergie leidet.
Im Folgenden ist n=200 . Die Zufallsgröße X beschreibt die Anzahl der Personen unter den ausgewählten Personen, die an einer Allergie leiden.
2. Teilaufgabe b) 5 BE - Bearbeitungszeit: 11:40
Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Wert der binomialverteilten Zufallsgröße X höchstens um eine Standardabweichung von ihrem Erwartungswert abweicht.
Aufgabe 6056
Abitur 2016 Gymnasium Bayern - Prüfungsteil B - Stochastik
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Ein Pharmaunternehmen hat einen Hauttest zum Nachweis einer Tierhaarallergie entwickelt. Im Rahmen einer klinischen Studie zeigt sich, dass der Hauttest bei einer aus der Bevölkerung Deutschlands zufällig ausgewählten Person mit einer Wahrscheinlichkeit von 39,5% ein positives Testergebnis liefert. Leidet eine Person an einer Tierhaarallergie, so ist das Testergebnis mit einer Wahrscheinlichkeit von 85 % positiv. Das Testergebnis ist jedoch bei einer Person, die nicht an einer Tierhaarallergie leidet, mit einer Wahrscheinlichkeit von 35 % ebenfalls positiv.
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Ermitteln Sie, welcher Anteil der Bevölkerung Deutschlands demnach allergisch auf Tierhaare reagiert. (Ergebnis: 9%)
2. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Eine aus der Bevölkerung Deutschlands zufällig ausgewählte Person wird getestet; das Testergebnis ist positiv. Berechnen Sie die Wahrscheinlichkeit dafür, dass diese Person tatsächlich an einer Tierhaarallergie leidet.
3. Teilaufgabe c) 2 BE - Bearbeitungszeit: 4:40
Aus der Bevölkerung Deutschlands wird eine Person zufällig ausgewählt und getestet. Beschreiben Sie das Ereignis, dessen Wahrscheinlichkeit im Sachzusammenhang mit dem Term \(0,09 \cdot 0,15 + 0,91 \cdot 0,35\) berechnet wird.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.