Lineare Gleichungssyteme mit zwei Variablen
Hier findest du folgende Inhalte
Formeln
Lineares Gleichungssystem mit 2 Variablen
Jede lineare Gleichung lässt sich als Gerade vom Typ \(y = k \cdot x + d\) darstellen. Da die Gleichungen linear sind, kommen nur Potenzen 1. Grades vor, also keine Quadrate oder höhere Potenzen.
Lineare Gleichungssysteme (LGS) in zwei Variablen bedeutet, dass zwei lineare Gleichungen vorliegen, die sich jeweils als Gerade darstellen lassen. Zur Lösung eines linearen Gleichungssystems mit zwei Variablen sind daher zwei Gleichungen erforderlich. Gibt es für ein lineares Gleichungssystem in zwei Variablen nur 1 Gleichung, ist das Gleichungssystem unterbestimmt, gibt es mehr als 2 Gleichungen, so ist das Gleichungssystem überbestimmt.
Ein sinnvoll lösbares LGS in zwei Variablen wird immer aus 2 Gleichungen bestehen, für die es folgende 3 Lösungsmöglichkeiten gibt: unendlich viele Lösungen, eine Lösung oder keine Lösung.
\(\matrix{ {{a_1} \cdot x} & { + {b_1}.y} & { = {c_1}} \cr {{a_2} \cdot x} & { + {b_2}.y} & { = {c_2}} \cr } \left| {\matrix{ {{\rm{Gl}}{\rm{.1}}} \cr {{\rm{Gl}}{\rm{.2}}} \cr } } \right.\)
wobei:
x, y | Variablen |
\({a_i},\,\,{b_i},\,\,{c_i}\,\, \in {\Bbb R}\) | Koeffizienten |
Grafische Lösung linearer Gleichungssysteme
Jeder der beiden linearen Gleichungen entspricht eine Gerade. Bei 2 Gleichungen liegen also 2 Geraden vor.
Da jede der beiden Geraden durch 2 Variable beschrieben wird, liegen entsprechend auch nur 2 Dimensionen x, y vor, also liegen die beiden Geraden in einer xy-Ebene, und nicht etwa im dreidimensionalen Raum. Wir müssen daher 3 Fälle unterscheiden:
- Fall 1: Zwei deckungsgleiche Gerade: Sind die Geraden ident, so gibt es unendlich viele Lösungen für das lineare Gleichungssystem.
- Fall 2: Zwei parallele Gerade: Es gibt es keinen Schnittpunkt, und somit auch keine Lösung des linearen Gleichungssystems.
- Fall 3: Zwei schneidende Gerade: Es gibt einen Schnittpunkt S, dessen Koordinaten xS, yS stellen die einzige Lösung für x, y des linearen Gleichungssystems dar.
\(\begin{array}{*{20}{c}} {I:}&{{a_1}x}& + &{{b_1}y}& = &{{c_1}}\\ {II}&{{a_2}x}& + &{{b_2}y}& = &{{c_2}} \end{array}\) | \(\begin{array}{l} {k_i} = - \dfrac{{{a_i}}}{{{b_i}}}\\ {d_i} = \dfrac{{{c_i}}}{{{b_i}}} \end{array}\) | \(\begin{array}{l} y = {k_1}x + {d_1}\\ y = {k_2}x + {d_2} \end{array}\) | |
implizite Darstellung | Umrechnung | explizite Darstellung | |
Fall 1 | \(\begin{array}{l} {a_1} \cdot C = {a_2}\\ {b_1} \cdot C = {b_2}\\ {c_1} \cdot C = {c_2} \end{array}\) | \(\begin{array}{l} {k_1} = {k_2}\\ {d_1} = {d_2} \end{array}\) | |
Fall 2 | \(\begin{array}{l} {a_1} \cdot C = {a_2}\\ {b_1} \cdot C = {b_2}\\ {c_1} \cdot C \ne {c_2} \end{array}\) | \(\begin{array}{l} {k_1} = {k_2}\\ {d_1} \ne {d_2} \end{array}\) | |
Fall 3 | \(\begin{array}{l} {a_1} \cdot C = {a_2}\\ {b_1} \cdot C \ne {b_2}\\ egal \end{array}\) | \(\begin{array}{l} {k_1} \ne {k_2}\\ egal \end{array}\) |
Eliminationsverfahren - Gleichsetzungsmethode
Beim Eliminationsverfahren bzw. Gleichsetzungsverfahren werden beide Gleichungen nach der selben Variablen (x) aufgelöst. Danach werden die erhaltenen Terme gleichgesetzt, wodurch die Variable (x) nach der explizit gemacht wurde, verschwindet und nur mehr eine Gleichung in der verbleibenden Variablen (y) überbleibt.
\(\matrix{ {{a_1} \cdot x} & { + {b_1} \cdot y} & { = {c_1}} \cr {{a_2} \cdot x} & { + {b_2} \cdot y} & { = {c_2}} \cr } \left| {\matrix{ {{\rm{Gl}}{\rm{.1}}} \cr {{\rm{Gl}}{\rm{.2}}} \cr } } \right.\)
\(\eqalign{ & {\text{Gl}}{\text{.1:}}{a_1} \cdot x + {b_1} \cdot y = {c_1} \Rightarrow x = \dfrac{{{c_1} - {b_1} \cdot y}}{{{a_1}}} \cr & {\text{Gl}}{\text{.2:}}{a_2} \cdot x + {b_2} \cdot y = {c_2} \Rightarrow x = \dfrac{{{c_2} - {b_2} \cdot y}}{{{a_2}}}\cr}\)
Gleichsetzen: Gl. 1 = Gl. 2
\(\dfrac{{{c_1} - {b_1} \cdot y}}{{{a_1}}} = \dfrac{{{c_2} - {b_2} \cdot y}}{{{a_2}}}\)
Substitutionsverfahren - Einsetzungsmethode
Beim Substitutionsverfahren bzw. Einsetzverfahren wird eine der Gleichungen nach einer Variablen aufgelöst, d.h. diese Variable wird explizit gemacht. Der so entstandene Term wird in die andere Gleichung eingesetzt, wodurch diese Gleichung nur mehr eine Variable enthält und lösbar wird.
\(\matrix{ {{a_1} \cdot x} & { + {b_1} \cdot y} & { = {c_1}} \cr {{a_2} \cdot x} & { + {b_2} \cdot y} & { = {c_2}} \cr } \left| {\matrix{ {{\rm{Gl}}{\rm{.1}}} \cr {{\rm{Gl}}{\rm{.2}}} \cr } } \right.\)
\({\text{Gl}}{\text{. 1: }}{a_1} \cdot x + {b_1} \cdot y = {c_1} \Rightarrow x = \dfrac{{{c_1} - {b_1} \cdot y}}{{{a_1}}}\)
x aus Gl. 1 in Gl. 2 einsetzen:
\({\text{Gl}}{\text{. 2: }}{a_2} \cdot x + {b_2} \cdot y = {c_2} \Rightarrow {a_2} \cdot \dfrac{{{c_1} - {b_1} \cdot y}}{{{a_1}}} + {b_2} \cdot y = {c_2}\)
Additionsverfahren - Methode gleicher Koeffizienten
Beim Additionsverfahren bzw. beim Verfahren gleicher Koeffizienten werden durch äquivalentes Umformen die Koeffizienten einer Variablen bis auf entgegengesetzte Vorzeichen gleich gemacht. Danach werden die Gleichungen addiert, wodurch die Variable wegfällt, deren Koeffizienten man zuvor gleich gemacht hat. Was bleibt ist eine Gleichung in einer Variablen, die man dadurch löst, dass man die verbliebene Variable explizit macht.
\(\eqalign{ & Gl.1:{a_1} \cdot x + {b_1} \cdot y = {c_1}\,\,\left| {{\lambda _1}} \right. \cr & Gl.2:{a_2} \cdot x + {b_2} \cdot y = {c_2}\,\,\left| {{\lambda _2}} \right. \cr}\)
\({\lambda _1},{\lambda _2}{\text{ so wählen}}{\text{, dass }}{\lambda _1} \cdot {b_1} = \pm {\lambda _2} \cdot {b_2}\)
\(\matrix{ {Gl.1} & {{\lambda _1} \cdot {a_1}.x} & { + {\lambda _1} \cdot {b_1} \cdot y} & { = {\lambda _1} \cdot {c_1}} \cr {Gl.2} & {{\lambda _2} \cdot {a_2} \cdot x} & { + {\lambda _2} \cdot {b_2} \cdot y} & { = {\lambda _2} \cdot {c_2}} \cr {Gl.1\,\, \mp Gl.2.} & {{\lambda _1} \cdot {a_1} \cdot x} & { \mp {\lambda _2} \cdot {a_2} \cdot x} & { = {\lambda _1} \cdot {c_1} \mp {\lambda _2} \cdot {c_2}} \cr }\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Cramersche Regel
Die cramersche Regel (Determinantenmethode) ist ein Verfahren, um Systeme von n-linearen Gleichungen mit n Variablen zu lösen bzw. um herauszufinden, dass es nicht eindeutig lösbar ist.
Rechnerische Lösung linearer Gleichungssysteme für n=2 Variable gemäß cramerscher Regel
\(\matrix{ {{a_1} \cdot x} & { + {b_1} \cdot y} & { = {c_1}} \cr {{a_2} \cdot x} & { + {b_2} \cdot y} & { = {c_2}} \cr } \left| {\matrix{ {{\rm{Gl}}{\rm{.1}}} \cr {{\rm{Gl}}{\rm{.2}}} \cr } } \right.\)
\(\eqalign{ & x = \dfrac{{{c_1}{b_2} - {c_2}{b_1}}}{{{a_1}{b_2} - {a_2}{b_1}}}; \cr & y = \dfrac{{{a_1}{c_2} - {a_2}{c_1}}}{{{a_1}{b_2} - {a_2}{b_1}}}; \cr} \)
wobei:
\(\left( {{a_1}{b_2} - {a_2}{b_1}} \right) \ne 0;\)
Rechnerische Lösung linearer Gleichungssysteme für n=3 Variable gemäß cramerscher Regel bzw. Determinantenmethode
Lösungsverfahren für lineare Gleichungssysteme, bei dem man das gegebene Gleichungssystem in Form einer Koeffizienten Matrix anschreibt und anschließend je Variable zwei Determinanten löst.
\(\eqalign{ & {a_1}.x + {b_1}.y + {c_1}.z = {d_1} \cr & {a_2}.x + {b_2}.y + {c_2}.z = {d_2} \cr & {a_3}.x + {b_3}.y + {c_3}.z = {d_3} \cr}\)
\(x = \dfrac{{{D_x}}}{D} = \dfrac{{\left| {\begin{array}{*{20}{l}} {{d_1}}&{{b_1}}&{{c_1}}\\ {{d_2}}&{{b_2}}&{{c_2}}\\ {{d_2}}&{{b_3}}&{{c_3}} \end{array}} \right|}}{D};\)
\(y = \dfrac{{{D_y}}}{D} = \dfrac{{\left| {\begin{array}{*{20}{l}} {{a_1}}&{{d_1}}&{{c_1}}\\ {{a_2}}&{{d_2}}&{{c_2}}\\ {{a_2}}&{{d_3}}&{{c_3}} \end{array}} \right|}}{D}\)
\(z = \dfrac{{{D_z}}}{D} = \dfrac{{\left| {\begin{array}{*{20}{l}} {{a_1}}&{{b_1}}&{{d_1}}\\ {{a_2}}&{{b_2}}&{{d_2}}\\ {{a_2}}&{{b_3}}&{{d_3}} \end{array}} \right|}}{D};\)
\(D = \left| {\begin{array}{*{20}{l}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right|;\)