Differenzierbarkeit
Hier findest du folgende Inhalte
Formeln
Ableitungsfunktion f'(x) zur Funktion f(x) auffinden
Die Differenzierbarkeit einer Funktion y=f(x) an einer Stelle x0 bedeutet, dass die Funktionskurve an dieser Stelle eine eindeutig bestimmte Tangente mit einer endlichen Steigung besitzt. Eine Funktion f(x) heißt an der Stelle x differenzierbar, wenn der Grenzwert gemäß nachfolgender Gleichung vorhanden ist. Diesen Grenzwert nennt man die 1. Ableitung.
\(f'({x_0}) = {\left. {\dfrac{{df}}{{dx}}} \right|_{x = {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{f({x_0} + \Delta x) - f({x_0})}}{{\Delta x}} = \dfrac{{dy}}{{dx}}\)
Differential
Das Differential bezeichnet den linearer Anteil des Zuwachses der abhängigen Variablen y, bei einer Veränderung der unabhängigen Variablen x.
\(\dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \dfrac{{dy}}{{dx}} = y'\)
Intervallweise differenzierbare Funktion
Eine Funktion f(x) ist in einem Intervall I genau dann differenzierbar, wenn sie für jedes x im Intervall I differenzierbar ist.
\(f'({x_1}) = {\left. {\dfrac{{df}}{{dx}}} \right|_{x = {x_1}}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{f({x_1} + \Delta x) - f({x_1})}}{{\Delta x}} = \dfrac{{dy}}{{dx}}\)
Man spricht von einer Knickstelle, wenn die linksseitige und die rechtsseitige Ableitung verschieden sind. Zur Ableitung von lediglich intervallweise differenzierbaren Funktionen bildet man daher Intervalle, welche die nicht differenzierbaren Stellen ausschließen. Man ersetzt dabei die Funktionsgleichung durch zwei oder mehrere geeignete abschnittweise definierte Teilfunktionen.
Stetigkeit einer Funktion
Eine Funktion ist an der Stelle x0 dann stetig, wenn an dieser Stelle der Funktionswert mit dem Grenzwert übereinstimmt. Eine Funktion, die an jeder Stelle ihres Definitionsbereichs stetig ist, heißt stetige Funktion.
\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)
Der Graph einer stetigen Funktion ist eine „durchgängige“ Linie, die durchaus Knicks aber keine Sprünge enthalten darf, die sich also „ohne mit dem Bleistift abzusetzen“ zeichnen lässt.
- Aus Stetigkeit folgert nicht automatisch Differenzierbarkeit. Da bei stetigen Funktionen „Knicks“ zugelassen sind, sind nicht alle stetigen Funktionen deshalb automatisch auch durchgängig differenzierbar.
- Aus Differenzierbarkeit folgert Stetigkeit (aber nicht umgekehrt!)
Definition der Ableitung
Existiert von einer reellen Funktion f(x) an jeder Stelle x0 ihrer Definitionsmenge Df ein Differentialquotient, so ist die Funktion f(x) differenzierbar.
Die nachfolgende Funktion ist zwar stetig, aber an 2 Stellen (x=+/-4) nicht differenzierbar.
Weierstraß Funktion
Die Weierstraß-Funktion ist auf Grund der unendlich vielen Summanden zwar überall konvergent und stetig, aber da man keine Tangente konstruieren kann, ist sie nicht differenzierbar:
\(f\left( x \right) = \sum\limits_{k = 1}^\infty {\dfrac{{{2^k} \cdot \sin \left( {{2^k}x} \right)}}{{{3^k}}}} \)
Erste Ableitung einer Funktion
Die Steigung der Tangente an den Graphen der Funktion an der Stelle x0 wird durch den Wert der 1. Ableitung der Funktion bestimmt.
\(y' = f'\left( x \right) = \dfrac{d}{{dx}}f\left( x \right) = k = \dfrac{{\Delta y}}{{\Delta x}} = \tan \alpha \)
Wir unterscheiden dabei 3 Fälle:
- Steigende Tangente: \(f'\left( {{x_0}} \right) > 0\) bzw. k>0: Der Graph ist an der Stelle x0 steigend. Die Tangente in x0 verläuft von links unten nach rechts oben.
- Horizontale Tangente: \(f'\left( {{x_0}} \right) = 0\) bzw. k=0: Der Graph verläuft an der Stelle x0 horizontal. Die Tangente in x0 hat keine Steigung, sie verläuft waagrecht. Es liegt eine Extremstelle (Hochpunkt, Tiefpunkt) oder ein Sattelpunk vor. Umgekehrt formuliert: Eine Funktion hat dann keine waagrechte Tangente, wenn ihre 1. Ableitung keine Nullstelle hat.
- Fallende Tangente: \(f'\left( {{x_0}} \right) < 0\) bzw. k<0: Der Graph verläuft an der Stelle x0 fallend. Die Tangente in x0 verläuft von links oben nach rechts unten
Zweite Ableitung einer Funktion
Das Krümmungsverhalten vom Graph der Funktion an der Stelle x0 wird durch den Wert der 2. Ableitung der Funktion bestimmt.
\(y'' = f''\left( x \right) = \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{{{d^2}}}{{d{x^2}}}f\left( x \right)\)
Links gekrümmter Graph, lokales Minimum
Ist \(f''\left( {{x_0}} \right) > 0\) so ist der Funktionsgraph ist an der Stelle x0linksgekrümmt - die Steigung der Tangente nimmt zu. Merkregel: Fährt man den Graph mit einem Fahrzeug entlang, dann muss man nach links lenken. Darin liegt auch die Begründung, warum für ein lokales Minimum \(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) > 0\) neben der 1. Ableitung auch die 2. Ableitung auf ihr Vorzeichen geprüft werden muss.
Rechtsgekrümmter Graph, lokales Maximum
Ist \(f''\left( {{x_0}} \right) < 0\) so ist der Funktionsgraph an der Stelle x0rechtsgekrümmt - die Steigung der Tangente nimmt ab. Merkregel: Fährt man den Graph mit einem Fahrzeug entlang, dann muss man nach rechts lenken. Darin liegt auch die Begründung, warum für ein lokales Maximum \(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) < 0\) neben der 1. Ableitung auch die 2. Ableitung auf ihr Vorzeichen geprüft werden muss.
Dritte Ableitung einer Funktion
Der Wechsel des Krümmungsverhaltens vom Graph einer Funktion an der Stelle x0 wird durch den Wert der 3. Ableitung der Funktion bestimmt.
\(y''' = f'''\left( x \right) = \dfrac{d}{{dx}}f''\left( x \right) = \dfrac{{{d^2}}}{{d{x^2}}}f'\left( x \right) = \dfrac{{{d^3}}}{{d{x^3}}}f\left( x \right)\)
Wir unterscheiden dabei 2 Fälle:
Ist \(f'''\left( {{x_0}} \right) > 0\) so erfolgt im Wendepunkt ein Übergang von einer Rechtskurve zu einer Linkskurve.
Ist \(f'''\left( {{x_0}} \right) < 0\): so erfolgt im Wendepunkt ein Übergang von einer Linkskurve zu einer Rechtskurve.
Höhere Ableitungen
Wenn die n-te Ableitung einer Funktion f(x) wiederum eine Funktion in x oder eine Konstante ist, so kann man auch diese n-te Ableitung erneut ableiten und erhält so die (n+1)-te Ableitung usw. Man spricht allgemein von "höheren Ableitungen".
\(y = f\left( x \right)\)
\(y' = f'\left( x \right) = \dfrac{d}{{dx}}f\left( x \right)\)
\(y'' = f''\left( x \right) = \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{{{d^2}}}{{d{x^2}}}f\left( x \right)\)
\(y''' = f'''\left( x \right) = \dfrac{d}{{dx}}f''\left( x \right) = \dfrac{{{d^2}}}{{d{x^2}}}f'\left( x \right) = \dfrac{{{d^3}}}{{d{x^3}}}f\left( x \right)\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Grafisches Differenzieren
Beim grafischen Differenzieren leitet man Aussagen über den Verlauf einer Funktion aus dem Verlauf ihrer 1. und 2. Ableitung ab, bzw. umgekehrt
f hat Extremstelle (HP oder TP) | f' hat NST | |
f hat Wendepunkt | f' hat Extremstelle (HP oder TP) | f'' hat NST |
f hat Sattelpunkt | f' hat HP oder TP auf x-Achse | f'' hat NST |
f steigt streng monoton | f' liegt oberhalb der x-Achse bzw. f' > 0 | |
f sinkt streng monoton | f' liegt unterhalb der x-Achse bzw. f' < 0 | |
f ist linksgekrümmt, positiv gekrümmt bzw. konvex | f' ist steigend | f'' > 0 |
f ist rechtsgekrümmt, negativ gekrümmt bzw. konkav | f' ist fallend | f'' < 0 |
Merkhilfe: NEW-Regel
N = Nullstelle; E=Extremstelle (HP, TP); W=Wendestelle
F(x) | f(x) | N | E | W | ||
f(x) | f'(x) | N | E | W | ||
f'(x) | f''(x) | N | E | W |
Zusammenhänge zwischen der Funktion, ihrer ersten und ihrer zweiten Ableitung beim grafisches Differenzieren
Funktion f(x) | Ableitung f‘(x) | Ableitung f"(x) |
f hat eineExtremstelle |
f‘ hat eine Nullstelle | keine Aussage möglich |
f hat einen Wendepunkt und die Krümmung ändert sich von positiv \(\cup\) auf negativ \(\cap\). |
f‘ hat einen Extremwert: Hochpunkt | f" hat eine Nullstelle |
f hat einen Wendepunktund die Krümmung ändert sich von negativ \(\cap\) auf positiv \(\cup\). |
f‘ hat einen Extremwert: Tiefpunkt | f" hat eine Nullstelle |
f hat einen Sattelpunkt und die Krümmung ändert sich von positiv \(\cup\) auf negativ \(\cap\). |
f‘ hat einen Hochpunkt der auf der x-Achse liegt d.h. der auch Nullstelle ist | f‘‘ hat eine Nullstelle |
f hat einen Sattelpunkt und die Krümmung ändert sich von negativ \(\cap\) auf positiv \(\cup\). |
f‘ hat einen Tiefpunkt der auf der x-Achse liegt d.h. der auch Nullstelle ist |
f‘‘ hat eine Nullstelle |
f steigt streng monoton an d.h. k>0 | f‘ liegt oberhalb der x-Achse | |
f sinkt streng monoton d.h. k<0 | f‘ liegt unterhalb der x-Achse | |
f ist symmetrisch zur y-Achse d.h. f ist eine gerade Funktion |
f‘ ist punktsymmetrisch zum Ursprung d.h. f‘ ist eine ungerade Funktion | f‘‘ ist symmetrisch zur y-Achse, d.h. f‘‘ ist eine gerade Funktion |
f ist punktsymmetrisch zum Ursprung d.h. f ist eine ungerade Funktion | f‘ ist symmetrisch zur y-Achse d.h. f‘ ist eine gerade Funktion | f‘‘ ist punktsymmetrisch zum Ursprung d.h. f‘‘ ist eine ungerade Funktion |
Die Steigung k der Tangente … | … ist der Funktionswert der Ableitung | |
Die Steigung k der Tangente … | … ist der Funktionswert der Ableitung |
Zusammenhang zwischen höheren Ableitungen
Je mehr Ableitungen man von einer Funktion kennt, um so genauere Aussagen kann man über den Verlauf vom Graph der Funktion machen
\(f\left( {{x_0}} \right) = 0\) | ⇒ | f(x) hat eine Nullstelle an der Stelle x0 |
\(f'\left( {{x_0}} \right) > 0\) | ⇒ | f(x0) ist streng monoton wachsend |
\(f'\left( {{x_0}} \right) < 0\) | ⇒ | f(x0) ist streng monoton fallend |
\(f'\left( {{x_0}} \right) = 0\) | ⇒ | f(x0) hat eine waagrechte Tangente an der Stelle x0 |
\(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) > 0\) | ⇒ | f(x0) hat Tiefpunkt / lokales Minimum an der Stelle x0 |
\(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) < 0\) | ⇒ | f(x0) hat Hochpunkt / lokales Maximum an der Stelle x0 |
\(f''\left( {{x_0}} \right) > 0\) | ⇒ | f(x0) ist links / positiv / konkav gekrümmt |
\(f''\left( {{x_0}} \right) < 0\) | ⇒ | f(x0) ist rechts / negativ / konvex gekrümmt |
\(f''\left( {{x_0}} \right) = 0{\text{ und }}f'''\left( {{x_0}} \right) \ne 0\) | ⇒ | f(x0) hat einen Wendepunkt (Graph ändert sein Krümmungsverhalten) an der Stelle x0; Der WP ist jener Punkt, an dem f(x) die stärkste Steigung hat. |
\(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) = 0{\text{ und }}f'''\left( {{x_0}} \right) \ne 0\) | ⇒ | f(x0) hat einen Sattelpunkt (=Wendepunkt mit waagrechter Tangente) an der Stelle x0 |
Graph mit Hochpunkt
Graph mit Tiefpunkt
Graph mit Wendepunkt
Graph mit Sattelpunkt
Aufgaben
Aufgabe 207
Newtonschen Näherungsverfahren
Bestimme mit Hilfe des Newtonschen Näherungsverfahrens eine Nullstelle von f(x).
\(f\left( x \right) = {x^3} + 3{x^2} + 6\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen