Steigung der Tangente an den Graphen einer Funktion
Die 1. Ableitung einer Funktion an der Stelle x0 gibt die Steigung der Tangente an den Graphen der Funktion an dieser Stelle x0 an
Hier findest du folgende Inhalte
Formeln
Ableitungsfunktion f'(x) zur Funktion f(x) auffinden
Die Differenzierbarkeit einer Funktion y=f(x) an einer Stelle x0 bedeutet, dass die Funktionskurve an dieser Stelle eine eindeutig bestimmte Tangente mit einer endlichen Steigung besitzt. Eine Funktion f(x) heißt an der Stelle x differenzierbar, wenn der Grenzwert gemäß nachfolgender Gleichung vorhanden ist. Diesen Grenzwert nennt man die 1. Ableitung.
\(f'({x_0}) = {\left. {\dfrac{{df}}{{dx}}} \right|_{x = {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{f({x_0} + \Delta x) - f({x_0})}}{{\Delta x}} = \dfrac{{dy}}{{dx}}\)
Differential
Das Differential bezeichnet den linearer Anteil des Zuwachses der abhängigen Variablen y, bei einer Veränderung der unabhängigen Variablen x.
\(\dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \dfrac{{dy}}{{dx}} = y'\)
Intervallweise differenzierbare Funktion
Eine Funktion f(x) ist in einem Intervall I genau dann differenzierbar, wenn sie für jedes x im Intervall I differenzierbar ist.
\(f'({x_1}) = {\left. {\dfrac{{df}}{{dx}}} \right|_{x = {x_1}}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{f({x_1} + \Delta x) - f({x_1})}}{{\Delta x}} = \dfrac{{dy}}{{dx}}\)
Man spricht von einer Knickstelle, wenn die linksseitige und die rechtsseitige Ableitung verschieden sind. Zur Ableitung von lediglich intervallweise differenzierbaren Funktionen bildet man daher Intervalle, welche die nicht differenzierbaren Stellen ausschließen. Man ersetzt dabei die Funktionsgleichung durch zwei oder mehrere geeignete abschnittweise definierte Teilfunktionen.
Stetigkeit einer Funktion
Eine Funktion ist an der Stelle x0 dann stetig, wenn an dieser Stelle der Funktionswert mit dem Grenzwert übereinstimmt. Eine Funktion, die an jeder Stelle ihres Definitionsbereichs stetig ist, heißt stetige Funktion.
\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)
Der Graph einer stetigen Funktion ist eine „durchgängige“ Linie, die durchaus Knicks aber keine Sprünge enthalten darf, die sich also „ohne mit dem Bleistift abzusetzen“ zeichnen lässt.
- Aus Stetigkeit folgert nicht automatisch Differenzierbarkeit. Da bei stetigen Funktionen „Knicks“ zugelassen sind, sind nicht alle stetigen Funktionen deshalb automatisch auch durchgängig differenzierbar.
- Aus Differenzierbarkeit folgert Stetigkeit (aber nicht umgekehrt!)
Definition der Ableitung
Existiert von einer reellen Funktion f(x) an jeder Stelle x0 ihrer Definitionsmenge Df ein Differentialquotient, so ist die Funktion f(x) differenzierbar.
Die nachfolgende Funktion ist zwar stetig, aber an 2 Stellen (x=+/-4) nicht differenzierbar.
Weierstraß Funktion
Die Weierstraß-Funktion ist auf Grund der unendlich vielen Summanden zwar überall konvergent und stetig, aber da man keine Tangente konstruieren kann, ist sie nicht differenzierbar:
\(f\left( x \right) = \sum\limits_{k = 1}^\infty {\dfrac{{{2^k} \cdot \sin \left( {{2^k}x} \right)}}{{{3^k}}}} \)
Erste Ableitung einer Funktion
Die Steigung der Tangente an den Graphen der Funktion an der Stelle x0 wird durch den Wert der 1. Ableitung der Funktion bestimmt.
\(y' = f'\left( x \right) = \dfrac{d}{{dx}}f\left( x \right) = k = \dfrac{{\Delta y}}{{\Delta x}} = \tan \alpha \)
Wir unterscheiden dabei 3 Fälle:
- Steigende Tangente: \(f'\left( {{x_0}} \right) > 0\) bzw. k>0: Der Graph ist an der Stelle x0 steigend. Die Tangente in x0 verläuft von links unten nach rechts oben.
- Horizontale Tangente: \(f'\left( {{x_0}} \right) = 0\) bzw. k=0: Der Graph verläuft an der Stelle x0 horizontal. Die Tangente in x0 hat keine Steigung, sie verläuft waagrecht. Es liegt eine Extremstelle (Hochpunkt, Tiefpunkt) oder ein Sattelpunk vor. Umgekehrt formuliert: Eine Funktion hat dann keine waagrechte Tangente, wenn ihre 1. Ableitung keine Nullstelle hat.
- Fallende Tangente: \(f'\left( {{x_0}} \right) < 0\) bzw. k<0: Der Graph verläuft an der Stelle x0 fallend. Die Tangente in x0 verläuft von links oben nach rechts unten
Zweite Ableitung einer Funktion
Das Krümmungsverhalten vom Graph der Funktion an der Stelle x0 wird durch den Wert der 2. Ableitung der Funktion bestimmt.
\(y'' = f''\left( x \right) = \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{{{d^2}}}{{d{x^2}}}f\left( x \right)\)
Links gekrümmter Graph, lokales Minimum
Ist \(f''\left( {{x_0}} \right) > 0\) so ist der Funktionsgraph ist an der Stelle x0linksgekrümmt - die Steigung der Tangente nimmt zu. Merkregel: Fährt man den Graph mit einem Fahrzeug entlang, dann muss man nach links lenken. Darin liegt auch die Begründung, warum für ein lokales Minimum \(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) > 0\) neben der 1. Ableitung auch die 2. Ableitung auf ihr Vorzeichen geprüft werden muss.
Rechtsgekrümmter Graph, lokales Maximum
Ist \(f''\left( {{x_0}} \right) < 0\) so ist der Funktionsgraph an der Stelle x0rechtsgekrümmt - die Steigung der Tangente nimmt ab. Merkregel: Fährt man den Graph mit einem Fahrzeug entlang, dann muss man nach rechts lenken. Darin liegt auch die Begründung, warum für ein lokales Maximum \(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) < 0\) neben der 1. Ableitung auch die 2. Ableitung auf ihr Vorzeichen geprüft werden muss.
Dritte Ableitung einer Funktion
Der Wechsel des Krümmungsverhaltens vom Graph einer Funktion an der Stelle x0 wird durch den Wert der 3. Ableitung der Funktion bestimmt.
\(y''' = f'''\left( x \right) = \dfrac{d}{{dx}}f''\left( x \right) = \dfrac{{{d^2}}}{{d{x^2}}}f'\left( x \right) = \dfrac{{{d^3}}}{{d{x^3}}}f\left( x \right)\)
Wir unterscheiden dabei 2 Fälle:
Ist \(f'''\left( {{x_0}} \right) > 0\) so erfolgt im Wendepunkt ein Übergang von einer Rechtskurve zu einer Linkskurve.
Ist \(f'''\left( {{x_0}} \right) < 0\): so erfolgt im Wendepunkt ein Übergang von einer Linkskurve zu einer Rechtskurve.
Höhere Ableitungen
Wenn die n-te Ableitung einer Funktion f(x) wiederum eine Funktion in x oder eine Konstante ist, so kann man auch diese n-te Ableitung erneut ableiten und erhält so die (n+1)-te Ableitung usw. Man spricht allgemein von "höheren Ableitungen".
\(y = f\left( x \right)\)
\(y' = f'\left( x \right) = \dfrac{d}{{dx}}f\left( x \right)\)
\(y'' = f''\left( x \right) = \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{{{d^2}}}{{d{x^2}}}f\left( x \right)\)
\(y''' = f'''\left( x \right) = \dfrac{d}{{dx}}f''\left( x \right) = \dfrac{{{d^2}}}{{d{x^2}}}f'\left( x \right) = \dfrac{{{d^3}}}{{d{x^3}}}f\left( x \right)\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgaben
Aufgabe 82
Steigung der Tangente in einem Punkt
Gegeben sei die Funktion:
\(f\left( x \right) = {x^2}\)
1. Teilaufgabe: Bestimme unter Anwendung der Definition des Differentialquotienten zunächst den Anstieg k der Tangente ganz allgemein.
2. Teilaufgabe: Berechne anschließend die Steigung k der Tangente durch Einsetzen für die Stelle x=3.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 6005
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Tangente an eine Logarithmusfunktion
Gegeben ist die Funktion
\(g:x \mapsto \ln \left( {2x + 3} \right)\)
mit maximaler Definitionsmenge D und Wertemenge W. Der Graph von g wird mit Gg bezeichnet.
1. Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Geben Sie D und W an.
2. Teilaufgabe b) 4 BE - Bearbeitungszeit: 9:20
Ermitteln Sie die Gleichung der Tangente an Gg im Schnittpunkt von Gg mit der x-Achse.
Aufgabe 6033
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Gegeben ist die Funktion
\(f:x \mapsto \sqrt {16 - 2x} = \sqrt {2 \cdot \left( {8 - x} \right)} \)
mit maximalem Definitionsbereich Df . Die nachfolgende Abbildung zeigt den Graphen Gf von f.
1. Teilaufgabe a.1) 2 BE - Bearbeitungszeit: 4:40
Zeichnen Sie den Graphen der in \({{\Bbb R}_0}^ + \) definierten Funktion \(w:x \mapsto \sqrt x \) in oben stehende Abbildung ein.
2. Teilaufgabe a.2) 2 BE - Bearbeitungszeit: 4:40
Geben Sie eine Möglichkeit dafür an, wie der Graph von f schrittweise aus dem Graphen von w hervorgehen kann.
3. Teilaufgabe b.1) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Größe des Winkels, den Gf und die y-Achse einschließen.
4. Teilaufgabe b.1) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie, dass Gf keine waagrechte Tangente besitzt.
Für jedes \(x \in {D_f}{\text{ mit }}0 < x < 8\) wird ein Dreieck OPxQx mit den Eckpunkten
\(O\left( {0\left| 0 \right.} \right),\,\,\,{P_x}\left( {x\left| 0 \right.} \right){\text{ und }}{Q_x}\left( {x\left| {f\left( x \right)} \right.} \right)\) festgelegt.
5. Teilaufgabe c) 2 BE - Bearbeitungszeit: 4:40
Tragen Sie für x=4 das zugehörige Dreieck OP4Q4 in Abbildung 1 ein.
6. Teilaufgabe c) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie, dass der Flächeninhalt A des Dreiecks OPxQx durch den Term
\(A\left( x \right) = \sqrt {4 \cdot {x^2} - \dfrac{1}{2} \cdot {x^3}} \) beschrieben wird.
Es gibt ein Dreieck OPxQx mit maximalem Flächeninhalt Amax .
7. Teilaufgabe d) 5 BE - Bearbeitungszeit: 11:40
Bestimmen Sie den prozentualen Anteil von Amax am Inhalt der Fläche, die Gf im I. Quadranten mit den Koordinatenachsen einschließt.
Aufgabe 1078
AHS - 1_078 & Lehrstoff: AN 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Berührung zweier Funktionsgraphen
Die Graphen zweier Funktionen f und g berühren einander im Punkt P = (x1 | y1). Für die Funktion f gilt: Die Tangente in P schließt mit der x-Achse einen Winkel von 45° ein und hat einen positiven Anstieg.
- Aussage 1: \(f\left( {{x_1}} \right) = g\left( {{x_1}} \right)\)
- Aussage 2: \(f'\left( {{x_1}} \right) = g\left( {{x_1}} \right)\)
- Aussage 3: \(f\left( {{x_1}} \right) = 1\)
- Aussage 4: \(g'\left( {{x_1}} \right) = 1\)
- Aussage 5: \(f'\left( {{x_1}} \right) = g'\left( {{x_1}} \right) = - 1\)
Aufgabenstellung:
Welche der angeführten Aussagen folgen jedenfalls aus diesen Bedingungen? Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1336
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 14. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ableitungswerte ordnen
Gegeben ist der Graph einer Polynomfunktion f.
Aufgabenstellung:
Ordnen Sie die Werte f'(0), f'(1), f'(3) und f'(4) der Größe nach, beginnend mit dem kleinsten Wert! (Die konkreten Werte von f'(0), f'(1), f'(3) und f'(4) sind dabei nicht anzugeben.)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 1868
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2021 - Teil-1-Aufgaben - 15. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ableitungsfunktion und Stammfunktion
Die Polynomfunktion f hat die Ableitungsfunktion f‘ und die Stammfunktion F.
Aufgabenstellung:
Kreuzen Sie die beiden Aussagen an, die auf jeden Fall zutreffen.
[2 aus 5]
[0 / 1 P.]
- Aussage 1: Der Ausdruck F(a) gibt die Steigung von f an der Stelle a für alle a ∈ ℝ an.
- Aussage 2: Die Stammfunktion F ist eindeutig bestimmt. Es gibt somit keine weitere Stammfunktion von f.
- Aussage 3: Die Ableitungsfunktion f‘ ist eindeutig bestimmt. Es gibt somit keine weitere Ableitungsfunktion von f.
- Aussage 4: Der Ausdruck F‘(0) gibt die Steigung der Funktion f an der Stelle 0 an.
- Aussage 5: Es gilt: F‘(a) = f(a) für alle a ∈ ℝ.
Aufgabe 4429
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gewächshäuser - Aufgabe B_505
Teil a
Auf der Insel Mainau steht ein besonderes Gewächshaus. Die nachstehende Abbildung zeigt die Vorderseite des Gewächshauses in einem Koordinatensystem. Die Vorderseite ist dabei symmetrisch zur y-Achse.
Der Graph der Funktion g ergibt sich durch Verschiebung des Graphen der Funktion f um 7,5 m nach rechts und 5,8 m nach unten.
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie die fehlenden Rechenzeichen und Zahlen in die dafür vorgesehenen Kästchen ein.
[0 / 1 P.]
\(g\left( x \right) = f\left( {x\fbox{}\,\,\boxed{}} \right)\,\,\boxed{}\,\,\boxed{}\)
Die Funktion f ist gegeben durch:
\(f\left( x \right) = \dfrac{{87}}{5} - \dfrac{{116}}{{1125}} \cdot {x^2}{\text{ mit }}0 \leqslant x \leqslant 7,5\)
x, f(x) |
Koordinaten in m |
An der Stelle x = 7,5 schließt die Tangente an den Graphen von f mit der horizontalen Tangente an den Graphen von g den stumpfen Winkel α ein (siehe obige Abbildung).
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Winkel α.
[0 / 1 P.]
Die in der obigen Abbildung eingezeichneten Graphen der Funktionen f, g und h haben jeweils die gleiche Lange.
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Umfang der von der dargestellten Kontur (=äußere Linie eines Körpers) begrenzten Fläche.
[0 / 1 P.]
Aufgabe 4439
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Olympische Sommerspiele 2008 in Peking - Aufgabe B_508
Teil b
Bei den Olympischen Sommerspielen 2008 in Peking siegte Tomasz Majewski im Kugelstoßfinale der Männer. Die Flugbahn der Kugel kann modellhaft durch den Graphen der Funktion h mit
\(h\left( x \right) = a \cdot {x^2} + b \cdot x + c\)
beschrieben werden.
x, h(x) |
Koordinaten der Flugbahn in m |
An der Stelle x = 0 kann die Geschwindigkeit der Kugel durch den Geschwindigkeitsvektor \(\overrightarrow {{v_M}} \) beschrieben werden (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie die fehlenden Ausdrücke in die dafür vorgesehenen Kästchen ein. Verwenden Sie dabei den Winkel α.
\(\overrightarrow {{v_M}} = \left| {\overrightarrow {{v_M}} } \right| \cdot \left( {\begin{array}{*{20}{c}} {\boxed{}} \\ {\boxed{}} \end{array}} \right)\)
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Weisen Sie nach, dass gilt:
tan(α) = b
[0 / 1 P.]
Aufgabe 4441
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Meerwasser und mehr Wasser - Aufgabe B_509
Teil a
Die Funktion V beschreibt näherungsweise den zeitlichen Verlauf des Wasservolumens eines bestimmten Sees. Dabei wird das Wasservolumen in Kubikmetern und die Zeit t in Tagen angegeben. V erfüllt die folgende Differenzialgleichung:
\(\dfrac{{dV}}{{dt}} = 0,001 \cdot \left( {350 - V} \right){\text{ mit }}V > 0\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie anhand der Differenzialgleichung, für welche Werte von V das Wasservolumen dieses Sees gemäß diesem Modell zunimmt.
[0 / 1 P.]
2 Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die allgemeine Lösung der Differenzialgleichung mithilfe der Methode Trennen der Variablen.
[0 / 1 P.]
Zur Zeit t = 0 betragt das Wasservolumen 150 m3.
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die spezielle Lösung der Differenzialgleichung.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 4450
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ressourcen - Aufgabe B_512
Teil b
Die zeitliche Entwicklung des jährlichen globalen Rohstoffverbrauchs kann durch die streng monoton steigende lineare Funktion g oder durch die streng monoton steigende Exponentialfunktion h modelliert werden (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie die Textlücken im nachstehenden Satz durch Ankreuzen des jeweils zutreffenden Satzteils so, dass eine richtige Aussage entsteht.
[0 / 1 P.]
Für ____1____ von g und h gilt: ____2____ .
- Lücke 1_1: genau 1 Stelle
- Lücke 1_2: genau 2 Stellen
- Lücke 1_3: mehr als 2 Stellen
- Lücke 2_1: \(g\left( t \right) = h\left( t \right) = 0\)
- Lücke 2_2: \(g'\left( t \right) = h'\left( t \right)\)
- Lücke 3_3: \(g''\left( t \right) = h''\left( t \right)\)