Vektoralgebra
Hier findest du folgende Inhalte
Formeln
Vektoralgebra
Die Vektoralgebra beschäftigt sich mit den Grundrechenregeln für Vektoren
Addition zweier Vektoren
Bei der Addition von Vektoren werden die einzelnen Komponenten der Vektoren je Achsenrichtung addiert. Zwei Vektoren werden graphisch addiert, \(\overrightarrow s = \overrightarrow a + \overrightarrow b\) indem man die Vektoren aneinander hängt. Der Summenvektor \(\overrightarrow s\) stellt die Diagonale eines durch die beiden Vektoren aufgespannten Parallelogramms dar.
\(\overrightarrow s = \overrightarrow a + \overrightarrow b = \left( {\begin{array}{*{20}{c}} {{a_x}}\\ {{a_y}}\\ {{a_z}} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} {{b_x}}\\ {{b_y}}\\ {{b_z}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{a_x} + {b_x}}\\ {{a_y} + {b_y}}\\ {{a_z} + {b_z}} \end{array}} \right)\)
Rechenregeln für die Vektoraddition
\(\begin{array}{l} \overrightarrow a + \overrightarrow b = \overrightarrow b + \overrightarrow a \\ \overrightarrow a + \left( {\overrightarrow b + \overrightarrow c } \right) = \left( {\overrightarrow a + \overrightarrow b } \right) + \overrightarrow c \\ k \cdot \left( {\overrightarrow a + \overrightarrow b } \right) = k \cdot \overrightarrow a + k \cdot \overrightarrow b \\ \left| {\overrightarrow a + \overrightarrow b } \right| \le \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| \end{array}\)
Illustration zur Addition zweier Vektoren
Subtraktion zweier Vektoren
Bei der Subtraktion von Vektoren werden die einzelnen Komponenten der Vektoren je Achsenrichtung subtrahiert. Zwei Vektoren werden graphisch subtrahiert, \(\overrightarrow d = \overrightarrow a - \overrightarrow b\) indem man den inversen Vektor von \(\overrightarrow b\) (gleich lang wie b, aber umgekehrte Richtung), also – b, addiert. Das Resultat einer Vektorsubtraktion wird als Differenzvektor bezeichnet.
\(\overrightarrow d = \overrightarrow a - \overrightarrow b = \left( {\begin{array}{*{20}{c}} {{a_x}}\\ {{a_y}}\\ {{a_z}} \end{array}} \right) - \left( {\begin{array}{*{20}{c}} {{b_x}}\\ {{b_y}}\\ {{b_z}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{a_x} - {b_x}}\\ {{a_y} - {b_y}}\\ {{a_z} - {b_z}} \end{array}} \right)\)
Illustration zur Subtraktion zweier Vektoren
Kommutativgesetz der Vektoralgebra
Das Kommutativgesetz der Vektoralgebra besagt, dass bei der Addition von Vektoren die Reihenfolge der Summanden beliebig vertauscht werden darf.
\(\overrightarrow A + \overrightarrow B = \overrightarrow B + \overrightarrow A \)
Distributivgesetze der Vektoralgebra
Das Distributivgesetz der Vektoralgebra besagt, dass man reelle Zahlen aus einer Summe heraushaben kann, wenn bei dieser Summe ein und der selbe Vektor mit unterschiedlichen reellen Zahlen multipliziert wird.
\(\eqalign{ & m\left( {n\overrightarrow A } \right) = \left( {mn} \right)\overrightarrow A = n\left( {m\overrightarrow A } \right) \cr & \left( {m + n} \right)\overrightarrow A = m\overrightarrow A + n\overrightarrow A \cr & m\left( {\overrightarrow A + \overrightarrow B } \right) = m\overrightarrow A + m\overrightarrow B \cr} \)
Assoziativgesetz der Vektoralgebra
Das Assoziativgesetz der Vektoralgebra besagt, dass bei der Addition von Vektoren die Klammern beliebig gesetzt werden dürfen.
\(\overrightarrow A + \left( {\overrightarrow B + \overrightarrow C } \right) = \left( {\overrightarrow A + \overrightarrow B } \right) + \overrightarrow C \)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Multiplikation von Vektoren
Bei der Multiplikation von Vektoren unterscheidet man zwischen
- Multiplikation eines Vektors mit einem Skalar. Das Resultat ist ein in der Länge veränderter Vektor
- Skalarprodukt als Multiplikation zweier Vektoren. Das Resultat ist ein Skalar. Wichtige Anwendung: Orthogonalitätskriterium und Winkel zwischen 2 Vektoren
- Kreuzprodukt als Multiplikation zweier Vektoren. Das Resultat ist ein dritter Vektor, der auf den beiden Ausgangsvektoren normal steht. Wichtige Anwendung: Parallelitätskriterium und Fläche des von 2 Vektoren aufgespannten Parallelogramms
- Spatprodukt als Multiplikation dreier Vektoren. Dabei wird zuerst das Kreuzprodukt zweier Vektoren gebildet. Mit dem daraus resultierenden Vektor und dem dritten gegebenen Vektor wird anschließend das Skalarprodukt gebildet. Das Resultat ist ein Skalar. Wichtige Anwendung: Volumen eines von 3 Vektoren aufgespannten Körpers
Multiplikation eines Vektors mit einem Skalar
Unter Skalarmultiplikation versteht man die Multiplikation eines Vektor \(\overrightarrow a \) mit einer reellen Zahl λ (Skalar). Der resultierende Vektor hat die λ-fache Länge des Ausgangsvektors. Für negative λ sind der Ausgangsvektor und der resultierende Vektor entgegengesetzt orientiert.
\(\lambda \cdot \overrightarrow a = \left( \matrix{ \lambda \cdot {a_x} \hfill \cr \lambda \cdot {a_y} \hfill \cr} \right)\,\,\,\,\,{\rm{wobei}}\,\,\,\,\,\lambda \overrightarrow a \left\| {\overrightarrow a } \right.\)
\(c \cdot \overrightarrow v = c \cdot \left( {\begin{array}{*{20}{c}} {{v_x}}\\ {{v_y}}\\ {{v_z}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {c \cdot {v_x}}\\ {c \cdot {v_y}}\\ {c \cdot {v_z}} \end{array}} \right)\)
Rechenregeln im Zusammenhang mit der Multiplikation eines Vektors mit einem Skalar
\(\eqalign{ & \lambda \cdot \left( {\overrightarrow a + \overrightarrow b } \right) = \lambda \cdot \overrightarrow a + \lambda \cdot \overrightarrow b \cr & \left( {\lambda + \mu } \right) \cdot \overrightarrow a = \lambda \cdot \overrightarrow a + \mu \cdot \overrightarrow a \cr & 0 \cdot \overrightarrow a = \overrightarrow 0 \cr}\)
Skalarprodukt
Das Skalarprodukt bzw. das innere Produkt zweier Vektoren ordnet zwei Vektoren eine reelle Zahl zu und wird gebildet, in dem komponentenweise multipliziert wird, und anschließend die Summe der Produkte gebildet wird. Es findet Anwendung bei der Winkelberechnung zwischen 2 Vektoren und beim Orthogonalitätskriterium welches besagt, dass wenn zwei Vektoren senkrecht auf einander stehen, ihr Skalarprodukt gleich Null ist
\( \eqalign{ & \overrightarrow a \circ \overrightarrow b = \left( {\matrix{ {{a_x}} \cr {{a_y}} \cr } } \right) \cdot \left( {\matrix{ {{b_x}} \cr {{b_y}} \cr } } \right) = {a_x} \cdot {b_x} + {a_y} \cdot {b_y} = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \varphi \cr & \cos \varphi = {{\overrightarrow a \circ \overrightarrow b } \over {\left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|}} = {{{a_x} \cdot {b_x} + {a_y} \cdot {b_y}} \over {\sqrt {{a_x}^2 + {a_y}^2} .\sqrt {{b_x}^2 + {b_y}^2} }} \cr}\)
Orthogonalitätskriterium
2 Vektoren stehen im rechter Winkel zueinander, wenn ihr Skalarprodukt Null ist
\(\eqalign{ & \overrightarrow a \bot \overrightarrow b \Leftrightarrow \overrightarrow a \circ \overrightarrow b = 0 \cr & {a_x}{b_x} + {a_y}{b_y} = 0 \cr}\)
Achtung in \({{\Bbb R}^3}\):
- Das Skalarprodukt im 3-dimensionalen Raum macht eine Aussage darüber, ob die beiden Geraden im rechten Winkel auf einander stehen.
- Es macht aber keine Aussage darüber, ob die beiden Geraden in einer Ebene liegen und einander daher schneiden, oder ob sie in 2 parallelen Ebenen liegen und daher windschief zu einander sind.
Winkel zwischen 2 Vektoren
Zwischen zwei Vektoren kann man zwei Winkel einzeichnen, einen innen- und einen außenliegenden Winkel. Wenn nichts Gegenteiliges gesagt wird, ist immer der Innenwinkel gemeint. Zur Berechnung des Winkels bestimmt man zunächst
- das Skalarprodukt \(\overrightarrow a \circ \overrightarrow b = {a_x} \cdot {b_x} + {a_y} \cdot {b_y}\) der beiden Vektoren,
- danach jeweils den Betrag \(\left| {\overrightarrow a } \right| = \sqrt {{a_x}^2 + {a_y}^2} \) bzw. \(\left| {\overrightarrow b } \right| = \sqrt {{b_x}^2 + {b_y}^2} \) der beiden Vektoren
- und setzt dann in die Formel ein.
- Indem wir den ArkusKosinus nehmen, erhalten wir als Resultat den Winkel in Grad.
Den Kosinus vom Winkel zwischen zwei Vektoren erhält man, indem man das Skalarprodukt der beiden Vektoren durch das Produkt der Beträge der beiden Vektoren dividiert.
\(\varphi = \arccos \dfrac{{\overrightarrow a \circ \overrightarrow b }}{{\left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|}}\) mit \(\left| {\overrightarrow a } \right| \ne 0;\,\,\,\,\,\left| {\overrightarrow b } \right| \ne 0\)
Rechenregeln im Zusammenhang mit dem Skalarprodukt
Kommutativgesetz
\(\overrightarrow a \circ \overrightarrow b = \overrightarrow b \circ \overrightarrow a \)
Distributivgesetz
\(\overrightarrow a \circ \left( {\overrightarrow b + \overrightarrow c } \right) = \overrightarrow a \circ \overrightarrow b + \overrightarrow a \circ \overrightarrow c \)
gemischtes Assoziativgesetz, wobei k ein Skalar ist
\(k \cdot \left( {\overrightarrow a \circ \overrightarrow b } \right) = \left( {k \cdot \overrightarrow a } \right) \circ \overrightarrow b = \overrightarrow a \circ \left( {k \cdot \overrightarrow b } \right)\)
Quadrat eines Vektors bzw. Skalarprodukt eines Vektors mit sich selbst
Betrachten wir den Spezialfall dass \(\overrightarrow b = \overrightarrow a \) , dann gilt:
Das Skalarprodukt eines Vektors mit sich selbst bzw. das Quadrat eines Vektors ist gleich dem Quadrat des Betrags vom Vektor. Wir können das wie folgt zeigen:
\(\begin{array}{l} \overrightarrow a \circ \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \varphi \\ \overrightarrow b = \overrightarrow a \to \cos \left( 0 \right) = 1\\ \overrightarrow a \circ \overrightarrow a = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow a } \right| \cdot 1\\ \overrightarrow a \circ \overrightarrow a = {\overrightarrow a ^2} = {\left| {\overrightarrow a } \right|^2} \end{array}\)
Kreuzprodukt
Für das Kreuzprodukt sind auch die Bezeichnungen vektorielles Produkt bzw. äußeres Produkt üblich Das vektorielle Produkt zweier Vektoren ist ein (dritter) Vektor, der senkrecht auf der von den beiden Vektoren aufgespannten Ebene steht. (Rechtssystem).
\(\eqalign{ & \overrightarrow c = \overrightarrow a \times \overrightarrow b = \left( {\matrix{ {{a_x}} \cr {{a_y}} \cr {{a_z}} \cr } } \right)\times\left( {\matrix{ {{b_x}} \cr {{b_y}} \cr {{b_z}} \cr } } \right) = \left( {\matrix{ {{a_y} \cdot {b_z} - {a_z} \cdot {b_y}} \cr {{a_z} \cdot {b_x} - {a_x} \cdot {b_z}} \cr {{a_x} \cdot {b_y} - {a_y} \cdot {b_x}} \cr } } \right) = \left( {\matrix{ {{c_x}} \cr {{c_y}} \cr {{c_z}} \cr } } \right) \cr & \left| {\overrightarrow c } \right| = \left| {\overrightarrow a \times \overrightarrow b } \right| = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|.\sin \varphi ; \cr}\)
\(\eqalign{ & {\text{mit }}\varphi = \sphericalangle \left( {\overrightarrow a ,\overrightarrow b } \right) & }\)
\(\eqalign{ & \overrightarrow a \times \overrightarrow b \bot \overrightarrow a \cr & \overrightarrow a \times \overrightarrow b \bot \overrightarrow b \cr} \)
Die Bildungsvorschrift für den doch etwas komplizierten Klammerausdruck lautet wie folgt:
Schreibe die Komponenten der beiden Vektoren an und füge die beiden oberen Zeilen unten noch einmal an
\(\begin{array}{*{20}{l}} {{a_x}}&{{b_x}}&{}&{}&{}\\ {{a_y}}&{{b_y}}&{}&{}&{}\\ {{a_z}}&{{b_z}}&{}&{}&{}\\ {{a_x}}&{{b_x}}&{}&{}&{}\\ {{a_y}}&{{b_y}}&{}&{}&{} \end{array}\)
Fange in der 1. Spalte in der 2. Zeile an und rechne: "(links oben mal rechts unten) minus (links unten mal rechts oben)
\(\begin{array}{*{20}{l}} {{a_x}}&{{b_x}}&{}&{{a_y} \cdot {b_z}}&{ - {a_z} \cdot {b_y}}\\ {{a_y}}&{{b_y}}&{}&{}&{}\\ {{a_z}}&{{b_z}}& \Rightarrow &{}&{}\\ {{a_x}}&{{b_x}}&{}&{}&{}\\ {{a_y}}&{{b_y}}&{}&{}&{} \end{array}\)
Wiederhole das Ganze in der 1. Spalten in der 3. Zeile
\(\begin{array}{*{20}{l}} {{a_x}}&{{b_x}}&{}&{{a_y} \cdot {b_z}}&{ - {a_z} \cdot {b_y}}\\ {{a_y}}&{{b_y}}&{}&{{a_z} \cdot {b_x}}&{ - {a_x} \cdot {b_z}}\\ {{a_z}}&{{b_z}}& \Rightarrow &{}&{}\\ {{a_x}}&{{b_x}}&{}&{}&{}\\ {{a_y}}&{{b_y}}&{}&{}&{} \end{array}\)
Wiederhole das Ganze in der 1. Spalten in der 4. Zeile
\(\begin{array}{*{20}{l}} {{a_x}}&{{b_x}}&{}&{{a_y} \cdot {b_z}}&{ - {a_z} \cdot {b_y}}\\ {{a_y}}&{{b_y}}&{}&{{a_z} \cdot {b_x}}&{ - {a_x} \cdot {b_z}}\\ {{a_z}}&{{b_z}}& \Rightarrow &{{a_x} \cdot {b_y}}&{ - {a_y} \cdot {b_x}}\\ {{a_x}}&{{b_x}}&{}&{}&{}\\ {{a_y}}&{{b_y}}&{}&{}&{} \end{array}\)
Betrag vom Kreuzprodukt entspricht der Fläche vom Parallelogramm
Der Betrag des Vektors entspricht der Maßzahl der Fläche, des durch die beiden Vektoren aufgespannten Parallelogramms.
\({\rm{A = l}} \cdot {\rm{b = }}\left| {\left( {\overrightarrow a \times \overrightarrow b } \right)} \right| = {\rm{Skalar}}\)
Illustration vom Kreuzprodukt
Parallelitätskriterium
Zwei Vektoren sind dann zueinander parallel, wenn der Betrag von dem Vektor, der sich aus dem Kreuzprodukt ergibt, Null ist
\(\begin{array}{l} \overrightarrow a \times \overrightarrow b = \overrightarrow 0 \Leftrightarrow \overrightarrow a \parallel \overrightarrow b \\ \left| {\overrightarrow a \times \overrightarrow b } \right| = 0 \Leftrightarrow \overrightarrow a \parallel \overrightarrow b \end{array}\)
Zwei Vektoren sind dann zu einander parallel, wenn ein Vektor ein Vielfaches vom anderen Vektor ist.
\(\overrightarrow a \left\| {\overrightarrow b } \right.\,\, \Leftrightarrow \,\,\overrightarrow b = \lambda .\overrightarrow a \Leftrightarrow \left( {\matrix{ {{b_x}} \cr {{b_y}} \cr } } \right) = \left( {\matrix{ {\lambda .{a_x}} \cr {\lambda .{a_y}} \cr } } \right)\)
Rechenregeln im Zusammenhang mit dem Kreuzprodukt
Das Kommutativgesetz gilt nicht für das Kreuzprodukt, sondern es besteht folgender Zusammenhang
\(\overrightarrow a \times \overrightarrow b = - \left( {\overrightarrow b \times \overrightarrow a } \right)\)
Das Distributivgesetz gilt für das Kreuzprodukt
\(\eqalign{ & \overrightarrow a \times \left( {\overrightarrow b + \overrightarrow c } \right) = \overrightarrow a \times \overrightarrow b + \overrightarrow a \times \overrightarrow c \cr & \left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \overrightarrow a \times \overrightarrow c + \overrightarrow b \times \overrightarrow c \cr} \)
Darüber hinaus gelten folgende Zusammenhänge
\(\eqalign{ & \overrightarrow a \times \overrightarrow a = 0 \cr & \left( {\lambda \overrightarrow a } \right) \times \overrightarrow b = \lambda \left( {\overrightarrow a \times \overrightarrow b } \right) \cr} \)
Das Spatprodukt
Beim Spatprodukt, auch gemischtes Produkt genannt, wird zuerst von zwei Vektoren das Kreuzprodukt und vom so resultierenden Vektor zusammen mit einem dritten Vektor das Skalarprodukt berechnet. Es dient dazu das Volumen eines von drei Vektoren aufgespannten Körpers zu berechnen. Solch einen Körper nennt man Parallelepiped oder Spat. Die Bezeichnung Spat ist uns aus der Mineralogie (Feldspat) vertraut. Das Spatprodukt dreier Vektoren liefert als Resultat ein Skalar.
\(V = l \cdot b \cdot h = A \cdot h = \left( {\overrightarrow a \times \overrightarrow b } \right) \circ \overrightarrow c = \overrightarrow d \circ \overrightarrow c = {\rm{Skalar}}\)
Geometrische Operationen mittels Vektorrechnung
Append Regel
Die Append Regel kommt dann zur Anwendung, wenn von einem Anfangspunkt ausgehend ein Vektor hinzugefügt (to append) werden soll und die Koordinaten vom Endpunkt des Vektors gesucht sind. Man spricht dabei von der Punkt-Vektor Form. Die Komponenten vom Ortsvektor des Endpunktes erhält man, indem man je Achsenrichtung die Komponenten des Anfangspunkts und jene des Vektors addiert.
\(Q = P + \overrightarrow v = P + \overrightarrow {PQ} = \left( {\begin{array}{*{20}{c}} {{P_x}}\\ {{P_y}} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} {{v_x}}\\ {{v_y}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{Q_x}}\\ {{Q_y}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{P_x} + {v_x}}\\ {{P_y} + {v_y}} \end{array}} \right)\)
Ein Punkt P plus ein Vektor v ergibt einen neuen Punkt Q
Normalvektor bzw. Orthogonalvektor & Rechts-Kipp-Regel bzw. Links Kipp Regel
In einem zweidimensionalen kartesischen Koordinatensystem kann es zweckmäßig sein, einen Vektor nach rechts bzw. nach links zu kippen, d.h. um \( \pm 90^\circ \) zu drehen. Der so gekippte Vektor steht dann senkrecht auf dem ursprünglichen Vektor, d.h. er wird zum Normalvektor, auch Orthogonalvektor genannt. Ein Beispiel dafür sind Höhenlinien oder Streckensymmetralen bei Dreiecken.
- Bei der Linkskippregel werden die Komponenten vertauscht und bei der oberen Komponente wird auch das Vorzeichen vertauscht.
- Bei der Rechtskippregel werden die Komponenten vertauscht und bei der unteren Komponente wird auch das Vorzeichen vertauscht.
\(\begin{array}{l} \overrightarrow a = \left( {\begin{array}{*{20}{c}} {{a_x}}\\ {{a_y}} \end{array}} \right)\\ {\overrightarrow n _{_{{\rm{links}}}}} = \left( {\begin{array}{*{20}{c}} { - {a_y}}\\ {{a_x}} \end{array}} \right){\rm{ bzw}}{\rm{. }}{\overrightarrow n _{_{rechts}}} = \left( {\begin{array}{*{20}{c}} {{a_y}}\\ { - {a_x}} \end{array}} \right) \end{array}\)
Projektionssatz
Der Projektionssatz ist eine geometrische Interpretation vom Skalarprodukt. Dabei wird ein Vektor \(\overrightarrow b\) in zwei Komponenten zerlegt. Die eine Komponente hat den selben Richtungsvektor wie der Vektor \(\overrightarrow a\), die andere Komponente liegt senkrecht dazu. Das skalare Produkt ist definiert als das Produkt der Länge der Projektion von \(\overrightarrow b\)auf \(\overrightarrow a\), also \(\left| {\overrightarrow b } \right|.\cos \varphi\) und der Länge von \(\overrightarrow a\) also \(\left| {\overrightarrow a } \right|\)
Normalprojektion eines Vektors auf einen anderen Vektor, Vektorprojektionsformel
In der Mechanik ist es oft zweckmäßig Kräfte in Komponenten zu zerlegen, wobei diese Komponenten nicht zwangsläufig parallel zu den Achsen des Koordinatensystems sein müssen. Dazu bedient man sich der Vektorprojektionsformel, wobei \(\left| {\overrightarrow {{b_a}} } \right|\) die Projektion \(\overrightarrow b \)von auf \(\overrightarrow a \) heißt.
- Die Projektion von \(\overrightarrow b\) auf \(\overrightarrow a\), ist der Betrag \(\left| {\overrightarrow {{b_a}} } \right|\), also eine reelle Zahl, die sich wie folgt ergibt:
\(\begin{array}{l} \left| {\overrightarrow {{b_a}} } \right| = \dfrac{{\overrightarrow a \circ \overrightarrow b }}{{\left| {\overrightarrow a } \right|}} = \left| {\dfrac{{{a_x} \cdot {b_x} + {a_y} \cdot {b_y}}}{{\sqrt {{{\left( {{a_x}} \right)}^2} + {{\left( {{a_y}} \right)}^2}} }}} \right|\\ {\rm{wobei }}0^\circ \le \varphi \le 90^\circ \end{array}\)
- Die Längskomponente von Vektor b in Richtung vom Vektor a, das ist der Vektor \(\overrightarrow {{b_a}}\), ergibt sich zu
\(\overrightarrow {{b_a}} = \dfrac{{\overrightarrow a \circ \overrightarrow b }}{{{{\left| {\overrightarrow a } \right|}^2}}} \cdot \overrightarrow a \)
Im Zähler vom Bruch steht das Skalarprodukt, also eine reelle Zahl, im Nenner vom Bruch steht das Quadrat vom Betrag, also ebenfalls eine reelle Zahl, womit der Bruch selbst ein Skalierungsfaktor für den Vektor \(\overrightarrow a\) ist. Das macht Sinn, denn es ist ja genau jener Anteil von \(\overrightarrow b\) gesucht, der in Richtung von \(\overrightarrow a\) wirkt.
Mittelpunkt einer Strecke bzw. Halbierungspunkt zwischen 2 Punkten
Den Mittelpunkt der Strecke von A nach B erhält man, indem man jeweils separat die x, y und z-Komponenten der beiden Punkte A, B addiert und anschließend durch 2 dividiert.
\(\begin{array}{l} A\left( {{A_x}\left| {{A_y}\left| {{A_z}} \right.} \right|} \right),\,\,\,\,\,B\left( {{B_x}\left| {{B_y}\left| {{B_z}} \right.} \right.} \right)\\ {H_{\overrightarrow {AB} }} = {M_{\overrightarrow {AB} }} = A + \dfrac{1}{2}\overrightarrow {AB} = \dfrac{1}{2} \cdot \left( {\begin{array}{*{20}{c}} {{A_x} + {B_x}}\\ {{A_y} + {B_y}}\\ {{A_z} + {B_z}} \end{array}} \right)\\ {H_{AB}}\left( {\dfrac{{{A_x} + {B_x}}}{2}\left| {\dfrac{{{A_y} + {B_y}}}{2}\left| {\dfrac{{{A_z} + {B_z}}}{2}} \right.} \right.} \right) \end{array}\)
Teilungspunkt einer Strecke
Der Teilungspunkt T ist jener Punkt, der die Strecke von A nach B im Verhältnis λ teilt.
\(T = A + \lambda \cdot \overrightarrow {AB} = \left( {1 - \lambda } \right)A + \lambda B\)
Schwerunkt eines Dreiecks
Um die Koordinaten vom Schwerpunkt eines Dreiecks zu berechnen, dessen 3 Eckpunkte gegeben sind, addiert man jeweils für jeden der 3 Eckpunkte gesondert die x, y und z-Komponenten und dividiert anschließend die jeweilige Summe durch 3.
Gegeben sind drei Punkte im Raum
\(A\left( {{A_x}\left| {{A_y}\left| {{A_z}} \right.} \right|} \right),\,\,\,\,\,B\left( {{B_x}\left| {{B_y}\left| {{B_z}} \right.} \right.} \right),\,\,\,\,\,C\left( {{C_x}\left| {{C_y}\left| {{C_z}} \right.} \right.} \right)\)
für deren Schwerpunkt gilt
\(\overrightarrow {OS} = \dfrac{1}{3} \cdot \left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)\)
\(S = \dfrac{1}{3}\left( {A + B + C} \right) = \dfrac{1}{3} \cdot \left( {\begin{array}{*{20}{c}} {{A_x} + {B_x} + {C_x}}\\ {{A_y} + {B_y} + {C_y}}\\ {{A_z} + {B_z} + {C_z}} \end{array}} \right)\)
\({S_{ABC}} = \left( {\dfrac{{{A_x} + {B_x} + {C_x}}}{3}\left| {\dfrac{{{A_y} + {B_y} + {C_y}}}{3}\left| {\dfrac{{{A_z} + {B_z} + {C_z}}}{3}} \right.} \right.} \right) \)
Flächeninhalt des von 2 Vektoren aufgespannten Parallelogramms
Das vektorielle Produkt zweier Vektoren ist ein dritter Vektor, der senkrecht auf der von den beiden Vektoren aufgespannten Ebene steht und dessen Betrag der Fläche des durch die beiden Vektoren aufgespannten Parallelogramms entspricht.
\(\begin{array}{l} A = \left| {\overrightarrow a \times \overrightarrow b } \right|\\ A = \left| {\left( {\begin{array}{*{20}{c}} {{a_x}}&{{b_x}}\\ {{a_y}}&{{b_y}} \end{array}} \right)} \right| = \left| {{a_x} \cdot {b_y} - {b_x} \cdot {a_y}} \right| \end{array}\)
Flächeninhalt des von 2 Vektoren aufgespannten Dreiecks
Die Fläche des von 2 Vektoren aufgespannten Dreiecks entspricht dem halben Betrag vom Kreuzprodukt der beiden Vektoren. Das Kreuzprodukt zweier Vektoren ist ein dritter Vektor, der senkrecht auf die von den beiden Vektoren aufgespannte Ebene steht und dessen Betrag der Fläche des durch die beiden Vektoren aufgespannten Parallelogramms entspricht. Die Fläche des aufgespannten Dreiecks ist genau die Hälfte der Fläche vom aufgespannten Parallelogramm.
\(\begin{array}{l} {A_\Delta } = \dfrac{1}{2} \cdot \left| {\overrightarrow a \times \overrightarrow b } \right|\\ {A_\Delta } = \dfrac{1}{2}\left| {\left( {\begin{array}{*{20}{c}} {{a_x}}&{{b_x}}\\ {{a_y}}&{{b_y}} \end{array}} \right)} \right| = \dfrac{1}{2}\left| {{a_x} \cdot {b_y} - {b_x} \cdot {a_y}} \right| \end{array}\)
Linearkombination von Vektoren
Unter der Linearkombination von Vektoren versteht man die Summe von mehreren Vektoren, wobei es sein kann, dass einzelne oder alle Vektoren auch noch mit einem Skalar multipliziert wurden.
\(\overrightarrow s = {\lambda _1} \cdot \overrightarrow {{a_1}} + {\lambda _2} \cdot \overrightarrow {{a_2}} + ... + {\lambda _n} \cdot \overrightarrow {{a_n}} \)
Lineare Abhängigkeit von Vektoren
- Zwei Vektoren sind linear abhängig und daher parallel zu einander, wenn das Kreuzprodukt der beiden Vektoren den Nullvektor ergibt.
- Zwei Vektoren sind linear abhängig und daher parallel zu einander, wenn es einen Faktor \(\lambda\)(=Skalar) gibt, mit dem man die Richtungsvektoren \(\left( {\begin{array}{*{20}{c}} {{a_x}}\\ {{a_y}} \end{array}} \right)\) des einen Vektors in die Richtungsvektoren des anderen Vektors durch Multiplikation umrechnen kann \(\left( {\begin{array}{*{20}{c}} {{b_x} = \lambda \cdot {a_x}}\\ {{b_y} = \lambda \cdot {a_y}} \end{array}} \right)\)
- Drei Vektoren sind linear abhängig, wenn sie in der selben Ebene liegen, also komplanar sind.
- Die drei Vektoren sind dann linear abhängig, wenn sich einer der Vektoren als Linearkombination der beiden anderen Vektoren anschreiben lässt.
\({\lambda _1} \circ \overrightarrow {{v_1}} + {\lambda _2} \circ \overrightarrow {{v_2}} = \overrightarrow {{v_3}} \)
- Mehrere Vektoren sind linear abhängig, wenn sie in einer Ebene liegen und durch Vektoraddition eine geschlossene Vektorkette bilden. Bei einer Vektorkette fallen Anfangs- und Endpunkt zusammen.
- Mehrere Vektoren sind dann linear abhängig, wenn sich eine Linearkombination angeben lässt, die den Nullvektor ergibt, wobei mindestens einer der Lambda-Koeffizienten ungleich null sein muss.
\({\lambda _1} \circ \overrightarrow {{v_1}} + {\lambda _2} \circ \overrightarrow {{v_2}} + {\lambda _3} \circ \overrightarrow {{v_3}} = \overrightarrow 0 \)
Lineare Unabhängigkeit von Vektoren
- Zwei Vektoren sind dann linear unabhängig, wenn ihr Kreuzprodukt nicht den Nullvektor ergibt
- Mehrere Vektoren sind dann linear unabhängig, wenn sich eine Linearkombination angeben lässt, die den Nullvektor ergibt wobei alle Lambda-Koeffizienten gleich null sein müssen.
Aufgaben
Aufgabe 85
Addition von Vektoren
Stelle die beiden gegebenen Vektoren als Pfeile von einem gemeinsamen Ausgangspunkt dar. Berechne und konstruiere dann den gefragten Vektor.
\(\overrightarrow a = \left( {\begin{array}{*{20}{c}} 5\\ 4 \end{array}} \right);\,\,\,\,\,\overrightarrow b = \left( {\begin{array}{*{20}{c}} 2\\ 3 \end{array}} \right);\)
Gesucht: \(\overrightarrow c = \overrightarrow a + \overrightarrow b \)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 86
Subtraktion von Vektoren
Stelle die beiden gegebenen Vektoren als Pfeile von einem gemeinsamen Ausgangspunkt dar. Berechne und konstruiere dann den gefragten Vektor.
\(\overrightarrow a = \left( {\begin{array}{*{20}{c}} 5\\ 4 \end{array}} \right);\,\,\,\,\,\overrightarrow b = \left( {\begin{array}{*{20}{c}} 2\\ 4 \end{array}} \right);\)
Gesucht: \(\overrightarrow c = \overrightarrow a - \overrightarrow b \)
Aufgabe 87
Subtraktion von Vektoren
Stelle die beiden gegebenen Vektoren als Pfeile von einem gemeinsamen Ausgangspunkt dar. Berechne und konstruiere dann den gefragten Vektor.
\(\overrightarrow a = \left( {\begin{array}{*{20}{c}} 5\\ 4 \end{array}} \right);\,\,\,\,\,\overrightarrow b = \left( {\begin{array}{*{20}{c}} 2\\ 4 \end{array}} \right);\)
Gesucht: \(\overrightarrow c = \overrightarrow b - \overrightarrow a \)
Aufgabe 88
Ermitteln des Richtungsvektors
Auf einer Seekarte wird der Kurs eines Bootes eingezeichnet. Das Boot startet beim Startpunkt S(2/0) und kommt nach 12 Minuten Fahrt beim Zielpunkt Z(2/36) an. Das Boot hat sich mit konstanter Geschwindigkeit und auf geradlinigem Kurs von S nach Z bewegt.
An welchem Punkt P befindet sich das Boot nach 3 Minuten Fahrt?
Aufgabe 89
Addition von Vektoren
Addiere die beiden Vektoren
\(\eqalign{ & \overrightarrow a = \left( {\matrix{ 2 \cr 1 \cr } } \right);\,\,\,\,\,\overrightarrow b = \left( {\matrix{ 1 \cr 3 \cr } } \right); \cr & \overrightarrow c = \overrightarrow a + \overrightarrow b \cr}\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 90
Subtraktion von Vektoren
Subtrahiere die beiden Vektoren
\(\eqalign{ & \overrightarrow a = \left( {\matrix{ 2 \cr 1 \cr } } \right);\,\,\,\,\,\overrightarrow b = \left( {\matrix{ 1 \cr 3 \cr } } \right); \cr & \overrightarrow c = \overrightarrow a - \overrightarrow b \cr}\)
Aufgabe 91
Skalieren eines Vektors
Multipliziere den Vektor \(\overrightarrow a\)mit der reellen Zahl \(\lambda\) und berechne den Vektor \(\overrightarrow c\).
\(\eqalign{ & \overrightarrow a = \left( {\matrix{ 1 \cr 3 \cr } } \right);\,\,\,\,\,\lambda = - 3; \cr & \overrightarrow c = \lambda .\overrightarrow a ; \cr}\)
Aufgabe 92
Skalieren eines Vektors
Addiere die beiden Vektoren
\(\eqalign{ & \overrightarrow a = \left( {\matrix{ 2 \cr 1 \cr } } \right);\,\,\,\,\,\overrightarrow b = \left( {\matrix{ 1 \cr 3 \cr } } \right); \cr & \overrightarrow c = 3\overrightarrow a + 2\overrightarrow b ; \cr}\)
Aufgabe 94
Normalprojektion eines Vektors auf einen anderen Vektor
Ermittle die Normalprojektion \(\overrightarrow {{b_a}}\)von \(\overrightarrow b\) auf \(\overrightarrow a\)
\(\overrightarrow a = \left( {\matrix{ 6 \cr 8 \cr } } \right);\,\,\,\,\,\overrightarrow b = \left( {\matrix{ 5 \cr {10} \cr } } \right);\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 95
Orthogonaler Vektor
Ermittle den orthogonalen Vektor zu
\(\overrightarrow a = \left( {\matrix{ 6 \cr 8 \cr } } \right);\)
1. Teilaufgabe: Verwende die Links-Kipp-Regel
2. Teilaufgabe: Verwende die Rechts-Kipp-Regel.
Aufgabe 96
Parallele Vektoren
Überprüfe, ob die beiden Vektoren parallel sind:
\(\overrightarrow a \parallel \overrightarrow b ?\)
\(\overrightarrow a = \left( {\matrix{ 3 \cr 4 \cr 5 \cr } } \right);\,\,\,\,\,\overrightarrow b = \left( {\matrix{ { - 6} \cr { - 8} \cr { - 15} \cr } } \right);\)
Aufgabe 97
Parallele Vektoren
Ermittle die fehlende Koordinate y, sodass die beiden Vektoren parallel sind
\(\overrightarrow a = \left( {\matrix{ 3 \cr 4 \cr 5 \cr } } \right);\,\,\,\,\,\overrightarrow b = \left( {\matrix{ { - 6} \cr y \cr { - 10} \cr } } \right);\)