Headerbar Werbung für Region "nicht-DACH"
Prüfungsteil B - Geometrie
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 6029
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
In einem kartesischen Koordinatensystem sind
- die Ebene \(E:{x_1} + {x_3} = 2\)
- der Punkt \(A\left( {0\left| {\sqrt 2 \left| 2 \right.} \right.} \right)\)
- und die Gerade \(g:\overrightarrow X = \overrightarrow A + \lambda \cdot \left( {\begin{array}{*{20}{c}} { - 1}\\ {\sqrt 2 }\\ 1 \end{array}} \right),\,\,\,\lambda \in {\Bbb R }\)
gegeben.
1. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20
Beschreiben Sie, welche besondere Lage die Ebene E im Koordinatensystem hat.
2. Teilaufgabe a.2) 1 BE - Bearbeitungszeit 2:20
Weisen Sie nach, dass die Ebene E die Gerade g enthält.
3. Teilaufgabe a.3) 2 BE - Bearbeitungszeit: 4:40
Geben Sie die Koordinaten der Schnittpunkte von E mit der x1-Achse und mit der x3 -Achse an.
4. Teilaufgabe a.4) 2 BE - Bearbeitungszeit: 4:40
Veranschaulichen Sie die Lage der Ebene E sowie den Verlauf der Geraden g in einem kartesischen Koordinatensystem (vgl. Abbildung).
Die x1x2-Ebene beschreibt modellhaft eine horizontale Fläche, auf der eine Achterbahn errichtet wurde. Ein gerader Abschnitt der Bahn beginnt im Modell im Punkt A und verläuft entlang der Geraden g. Der Vektor
\(\overrightarrow v = \left( {\begin{array}{*{20}{c}} { - 1}\\ {\sqrt 2 }\\ 1 \end{array}} \right)\)
beschreibt die Fahrtrichtung auf diesem Abschnitt.
5. Teilaufgabe b.1) 3 BE - Bearbeitungszeit: 7:00
Berechnen Sie im Modell die Größe des Winkels, unter dem dieser Abschnitt der Achterbahn gegenüber der Horizontalen ansteigt.
6. Teilaufgabe b.2) 2 BE - Bearbeitungszeit: 4:40
Berechnen Sie im Modell die zugehörige Steigung dieses Abschnitts in Prozent.
An den betrachteten geraden Abschnitt der Achterbahn schließt sich – in Fahrtrichtung gesehen – eine Rechtskurve an, die im Modell durch einen Viertelkreis beschrieben wird, der in der Ebene E verläuft und den Mittelpunkt \(M\left( {0\left| {3 \cdot \sqrt 2 \left| 2 \right.} \right.} \right)\) hat. Das Lot von M auf g schneidet g im Punkt B. Im Modell stellt B den Punkt der Achterbahn dar, in dem der gerade Abschnitt endet und die Kurve beginnt.
7. Teilaufgabe c.1) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Koordinaten von B.
8. Teilaufgabe c.2) 3 BE - Bearbeitungszeit: 7:00
Berechnen Sie den Kurvenradius im Modell.
(Teilergebnis: \(B\left( { - 1\left| {2 \cdot \sqrt 2 \left| 3 \right.} \right.} \right)\)
Das Ende der Rechtskurve wird im Koordinatensystem durch den Punkt C beschrieben.
9. Teilaufgabe d) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie, dass für den Ortsvektor des Punkts C gilt: \(\overrightarrow C = \overrightarrow M + \overrightarrow v \)
Ein Wagen der Achterbahn durchfährt den Abschnitt, der im Modell durch die Strecke [AB] und den Viertelkreis von B nach C dargestellt wird, mit einer durchschnittlichen Geschwindigkeit von 15 m/s.
10. Teilaufgabe e) 4 BE - Bearbeitungszeit: 9:20
Berechnen Sie die Zeit, die der Wagen dafür benötigt, auf Zehntelsekunden genau, wenn eine Längeneinheit im Koordinatensystem 10 m in der Realität entspricht.
Banner Werbung für Region "nicht-DACH"
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 6030
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Die Abbildung zeigt eine Sonnenuhr mit einer gegenüber der Horizontalen geneigten, rechteckigen Grundplatte, auf der sich ein kreisförmiges Zifferblatt befindet. Auf der Grundplatte ist der Polstab befestigt, dessen Schatten bei Sonneneinstrahlung die Uhrzeit auf dem
Zifferblatt anzeigt. Eine Sonnenuhr dieser Bauart wird in einem kartesischen Koordinatensystem modellhaft dargestellt (siehe nachfolgende Abbildung).
Dabei beschreibt das Rechteck ABCD mit \(A\left( {5\left| { - 4\left| 0 \right.} \right.} \right)\) und \(B\left( {5\left| {4\left| 0 \right.} \right.} \right)\) die Grundplatte der Sonnenuhr. Der Befestigungspunkt des Polstabs auf der Grundplatte wird im Modell durch den Diagonalenschnittpunkt \(M\left( {2,5\left| {0\left| 2 \right.} \right.} \right)\) des Rechtecks ABCD dargestellt. Eine Längeneinheit im Koordinatensystem entspricht 10cm in der Realität. Die Horizontale wird im Modell durch die x1x2-Ebene beschrieben.
1. Teilaufgabe a.1) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Koordinaten des Punkts C.
2. Teilaufgabe a.2) 3 BE - Bearbeitungszeit: 7:00
Ermitteln Sie eine Gleichung der Ebene E, in der das Rechteck ABCD liegt, in Normalenform.
(mögliches Teilergebnis: \(E:4{x_1} + 5{x_3} - 20 = 0\))
Die Grundplatte ist gegenüber der Horizontalen um den Winkel α geneigt. Damit man mit der Sonnenuhr die Uhrzeit korrekt bestimmen kann, muss für den Breitengrad φ des Aufstellungsorts der Sonnenuhr \(\alpha + \varphi = 90^\circ \) gelten.
3. Teilaufgabe b) 4 BE - Bearbeitungszeit: 9:20
Bestimmen Sie, für welchen Breitengrad φ die Sonnenuhr gebaut wurde.
Der Polstab wird im Modell durch die Strecke \(\left[ {MS} \right]{\rm{ mit }}S\left( {4,5\left| {0\left| {4,5} \right.} \right.} \right)\) dargestellt.
4. Teilaufgabe c.1) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie, dass der Polstab senkrecht auf der Grundplatte steht.
5. Teilaufgabe c.2) 2 BE - Bearbeitungszeit: 4:40
Berechnen Sie die Länge des Polstabs auf Zentimeter genau.
Sonnenlicht, das an einem Sommertag zu einem bestimmten Zeitpunkt t0 auf die Sonnenuhr einfällt, wird im Modell durch parallele Geraden mit dem Richtungsvektor
\(\overrightarrow u = \left( {\begin{array}{*{20}{c}} 6\\ 6\\ { - 13} \end{array}} \right)\)dargestellt.
6. Teilaufgabe d) 6 BE - Bearbeitungszeit: 14:00
Weisen Sie nach, dass der Schatten der im Modell durch den Punkt S dargestellten Spitze des Polstabs außerhalb der rechteckigen Grundplatte liegt.
Um 6 Uhr verläuft der Schatten des Polstabs im Modell durch den Mittelpunkt der Kante \(\left[ {BC} \right]\), um 12 Uhr durch den Mittelpunkt der Kante \(\left[ {AB} \right]\) und um 18 Uhr durch den Mittelpunkt der Kante \(\left[ {AD} \right]\).
7. Teilaufgabe e) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie, dass der (in Teilaufgabe c, Anm.) betrachtete Zeitpunkt t0 vor 12 Uhr liegt.
Im Verlauf des Vormittags überstreicht der Schatten des Polstabs auf der Grundplatte in gleichen Zeiten gleich große Winkel.
8. Teilaufgabe f) 3 BE - Bearbeitungszeit: 7:00
Bestimmen Sie die Uhrzeit auf Minuten genau, zu der der Schatten des Polstabs im Modell durch den Punkt B verläuft.