Prüfungsteil B - Geometrie
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 6029
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
In einem kartesischen Koordinatensystem sind
- die Ebene \(E:{x_1} + {x_3} = 2\)
- der Punkt \(A\left( {0\left| {\sqrt 2 \left| 2 \right.} \right.} \right)\)
- und die Gerade \(g:\overrightarrow X = \overrightarrow A + \lambda \cdot \left( {\begin{array}{*{20}{c}} { - 1}\\ {\sqrt 2 }\\ 1 \end{array}} \right),\,\,\,\lambda \in {\Bbb R }\)
gegeben.
1. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20
Beschreiben Sie, welche besondere Lage die Ebene E im Koordinatensystem hat.
2. Teilaufgabe a.2) 1 BE - Bearbeitungszeit 2:20
Weisen Sie nach, dass die Ebene E die Gerade g enthält.
3. Teilaufgabe a.3) 2 BE - Bearbeitungszeit: 4:40
Geben Sie die Koordinaten der Schnittpunkte von E mit der x1-Achse und mit der x3 -Achse an.
4. Teilaufgabe a.4) 2 BE - Bearbeitungszeit: 4:40
Veranschaulichen Sie die Lage der Ebene E sowie den Verlauf der Geraden g in einem kartesischen Koordinatensystem (vgl. Abbildung).
Die x1x2-Ebene beschreibt modellhaft eine horizontale Fläche, auf der eine Achterbahn errichtet wurde. Ein gerader Abschnitt der Bahn beginnt im Modell im Punkt A und verläuft entlang der Geraden g. Der Vektor
\(\overrightarrow v = \left( {\begin{array}{*{20}{c}} { - 1}\\ {\sqrt 2 }\\ 1 \end{array}} \right)\)
beschreibt die Fahrtrichtung auf diesem Abschnitt.
5. Teilaufgabe b.1) 3 BE - Bearbeitungszeit: 7:00
Berechnen Sie im Modell die Größe des Winkels, unter dem dieser Abschnitt der Achterbahn gegenüber der Horizontalen ansteigt.
6. Teilaufgabe b.2) 2 BE - Bearbeitungszeit: 4:40
Berechnen Sie im Modell die zugehörige Steigung dieses Abschnitts in Prozent.
An den betrachteten geraden Abschnitt der Achterbahn schließt sich – in Fahrtrichtung gesehen – eine Rechtskurve an, die im Modell durch einen Viertelkreis beschrieben wird, der in der Ebene E verläuft und den Mittelpunkt \(M\left( {0\left| {3 \cdot \sqrt 2 \left| 2 \right.} \right.} \right)\) hat. Das Lot von M auf g schneidet g im Punkt B. Im Modell stellt B den Punkt der Achterbahn dar, in dem der gerade Abschnitt endet und die Kurve beginnt.
7. Teilaufgabe c.1) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Koordinaten von B.
8. Teilaufgabe c.2) 3 BE - Bearbeitungszeit: 7:00
Berechnen Sie den Kurvenradius im Modell.
(Teilergebnis: \(B\left( { - 1\left| {2 \cdot \sqrt 2 \left| 3 \right.} \right.} \right)\)
Das Ende der Rechtskurve wird im Koordinatensystem durch den Punkt C beschrieben.
9. Teilaufgabe d) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie, dass für den Ortsvektor des Punkts C gilt: \(\overrightarrow C = \overrightarrow M + \overrightarrow v \)
Ein Wagen der Achterbahn durchfährt den Abschnitt, der im Modell durch die Strecke [AB] und den Viertelkreis von B nach C dargestellt wird, mit einer durchschnittlichen Geschwindigkeit von 15 m/s.
10. Teilaufgabe e) 4 BE - Bearbeitungszeit: 9:20
Berechnen Sie die Zeit, die der Wagen dafür benötigt, auf Zehntelsekunden genau, wenn eine Längeneinheit im Koordinatensystem 10 m in der Realität entspricht.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 6030
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Die Abbildung zeigt eine Sonnenuhr mit einer gegenüber der Horizontalen geneigten, rechteckigen Grundplatte, auf der sich ein kreisförmiges Zifferblatt befindet. Auf der Grundplatte ist der Polstab befestigt, dessen Schatten bei Sonneneinstrahlung die Uhrzeit auf dem
Zifferblatt anzeigt. Eine Sonnenuhr dieser Bauart wird in einem kartesischen Koordinatensystem modellhaft dargestellt (siehe nachfolgende Abbildung).
Dabei beschreibt das Rechteck ABCD mit \(A\left( {5\left| { - 4\left| 0 \right.} \right.} \right)\) und \(B\left( {5\left| {4\left| 0 \right.} \right.} \right)\) die Grundplatte der Sonnenuhr. Der Befestigungspunkt des Polstabs auf der Grundplatte wird im Modell durch den Diagonalenschnittpunkt \(M\left( {2,5\left| {0\left| 2 \right.} \right.} \right)\) des Rechtecks ABCD dargestellt. Eine Längeneinheit im Koordinatensystem entspricht 10cm in der Realität. Die Horizontale wird im Modell durch die x1x2-Ebene beschrieben.
1. Teilaufgabe a.1) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Koordinaten des Punkts C.
2. Teilaufgabe a.2) 3 BE - Bearbeitungszeit: 7:00
Ermitteln Sie eine Gleichung der Ebene E, in der das Rechteck ABCD liegt, in Normalenform.
(mögliches Teilergebnis: \(E:4{x_1} + 5{x_3} - 20 = 0\))
Die Grundplatte ist gegenüber der Horizontalen um den Winkel α geneigt. Damit man mit der Sonnenuhr die Uhrzeit korrekt bestimmen kann, muss für den Breitengrad φ des Aufstellungsorts der Sonnenuhr \(\alpha + \varphi = 90^\circ \) gelten.
3. Teilaufgabe b) 4 BE - Bearbeitungszeit: 9:20
Bestimmen Sie, für welchen Breitengrad φ die Sonnenuhr gebaut wurde.
Der Polstab wird im Modell durch die Strecke \(\left[ {MS} \right]{\rm{ mit }}S\left( {4,5\left| {0\left| {4,5} \right.} \right.} \right)\) dargestellt.
4. Teilaufgabe c.1) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie, dass der Polstab senkrecht auf der Grundplatte steht.
5. Teilaufgabe c.2) 2 BE - Bearbeitungszeit: 4:40
Berechnen Sie die Länge des Polstabs auf Zentimeter genau.
Sonnenlicht, das an einem Sommertag zu einem bestimmten Zeitpunkt t0 auf die Sonnenuhr einfällt, wird im Modell durch parallele Geraden mit dem Richtungsvektor
\(\overrightarrow u = \left( {\begin{array}{*{20}{c}} 6\\ 6\\ { - 13} \end{array}} \right)\)dargestellt.
6. Teilaufgabe d) 6 BE - Bearbeitungszeit: 14:00
Weisen Sie nach, dass der Schatten der im Modell durch den Punkt S dargestellten Spitze des Polstabs außerhalb der rechteckigen Grundplatte liegt.
Um 6 Uhr verläuft der Schatten des Polstabs im Modell durch den Mittelpunkt der Kante \(\left[ {BC} \right]\), um 12 Uhr durch den Mittelpunkt der Kante \(\left[ {AB} \right]\) und um 18 Uhr durch den Mittelpunkt der Kante \(\left[ {AD} \right]\).
7. Teilaufgabe e) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie, dass der (in Teilaufgabe c, Anm.) betrachtete Zeitpunkt t0 vor 12 Uhr liegt.
Im Verlauf des Vormittags überstreicht der Schatten des Polstabs auf der Grundplatte in gleichen Zeiten gleich große Winkel.
8. Teilaufgabe f) 3 BE - Bearbeitungszeit: 7:00
Bestimmen Sie die Uhrzeit auf Minuten genau, zu der der Schatten des Polstabs im Modell durch den Punkt B verläuft.
Aufgabe 6057
Abitur 2016 Gymnasium Bayern - Prüfungsteil B - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
In einem kartesischen Koordinatensystem legen die Punkte \(A\left( {6\left| {3\left| 3 \right.} \right.} \right),\,\,B\left( {3\left| {6\left| 3 \right.} \right.} \right){\text{ und C}}\left( {3\left| {3\left| 6 \right.} \right.} \right)\) das gleichseitige Dreieck ABC fest.
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Ermitteln Sie eine Gleichung der Ebene E, in der das Dreieck ABC liegt, in Normalenform.
mögliches Ergebnis: \(E:{x_1} + {x_2} + {x_3} - 12 = 0\)
Spiegelt man die Punkte A, B und C am Symmetriezentrum \(Z\left( {3\left| {3\left| 3 \right.} \right.} \right)\) o erhält man die Punkte A‘ , B‘ bzw. C‘ .
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Beschreiben Sie die Lage der Ebene, in der die Punkte A, B und Z liegen, im Koordinatensystem. Zeigen Sie, dass die Strecke \(\left[ {CC'} \right]\) senkrecht auf dieser Ebene steht.
3. Teilaufgabe c) 4 BE - Bearbeitungszeit: 9:20
Begründen Sie, dass das Viereck ABA‘B‘ ein Quadrat mit der Seitenlänge \(3 \cdot \sqrt 2 \) ist.
Der Körper ABA‘B’CC‘ ist ein sogenanntes Oktaeder. Er besteht aus zwei Pyramiden mit dem Quadrat ABA’B‘ als gemeinsamer Grundfläche und den Pyramidenspitzen C bzw. C‘ .
4. Teilaufgabe d) 2 BE - Bearbeitungszeit: 4:40
Weisen Sie nach, dass das Oktaeder das Volumen 36 besitzt.
5. Teilaufgabe e) 4 BE - Bearbeitungszeit: 9:20
Bestimmen Sie die Größe des Winkels zwischen den Seitenflächen ABC und AC‘B.
6. Teilaufgabe f) 3 BE - Bearbeitungszeit: 7:00
Alle Eckpunkte des Oktaeders liegen auf einer Kugel. Geben Sie eine Gleichung dieser Kugel an. Berechnen Sie den Anteil des Oktaedervolumens am Kugelvolumen.
Aufgabe 6058
Abitur 2016 Gymnasium Bayern - Prüfungsteil B - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Für die Fernsehübertragung eines Fußballspiels wird über dem Spielfeld eine bewegliche Kamera installiert. Ein Seilzugsystem, das an vier Masten befestigt wird, hält die Kamera in der gewünschten Position. Seilwinden, welche die Seile koordiniert verkürzen und verlängern, ermöglichen eine Bewegung der Kamera.
In der Abbildung ist das horizontale Spielfeld modellhaft als Rechteck in der x1x2 -Ebene eines kartesischen Koordinatensystems dargestellt. Die Punkte W1, W2 , W3 und W4 beschreiben die Positionen der vier Seilwinden. Eine Längeneinheit im Koordinatensystem entspricht 1m in der Realität, d. h. alle vier Seilwinden sind in einer Höhe von 30 m angebracht.
Der Punkt \(A\left( {45\left| {60\left| 0 \right.} \right.} \right)\) beschreibt die Lage des Anstoßpunkts auf dem Spielfeld. Die Kamera befindet sich zunächst in einer Höhe von 25 m vertikal über dem Anstoßpunkt. Um den Anstoß zu filmen, wird die Kamera um 19 m vertikal abgesenkt. In der Abbildung ist die ursprüngliche Kameraposition durch den Punkt K0 , die abgesenkte Position durch den Punkt K1 dargestellt.
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Berechnen Sie die Seillänge, die von jeder der vier Seilwinden abgerollt werden muss, um dieses Absenken zu ermöglichen, wenn man davon ausgeht, dass die Seile geradlinig verlaufen.
Kurze Zeit später legt sich ein Torhüter den Ball für einen Abstoß bereit. Der Abstoß soll von der Kamera aufgenommen werden. Durch das gleichzeitige Verlängern beziehungsweise Verkürzen der vier Seile wird die Kamera entlang einer geraden Bahn zu einem Zielpunkt bewegt, der in einer Höhe von 10 m über dem Spielfeld liegt. Im Modell wird der Zielpunkt durch den Punkt K2 beschrieben, die Bewegung der Kamera erfolgt vom Punkt K1 entlang der Geraden g mit der Gleichung
\(g:\overrightarrow X = \overrightarrow {{K_1}} + \lambda \cdot \left( {\begin{array}{*{20}{c}} 3\\ {20}\\ 2 \end{array}} \right),\,\,\lambda \in \Bbb R\)
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Bestimmen Sie die Koordinaten von K2 .
Ergebnis: \({K_2}\left( {51\left| {100\left| {10} \right.} \right.} \right)\)
Im Zielpunkt ist die Kamera zunächst senkrecht nach unten orientiert. Um die Position des Balls anzuvisieren, die im Modell durch den Punkt \(B\left( {40\left| {105\left| 0 \right.} \right.} \right)\) beschrieben wird, muss die Kamera gedreht werden.
3. Teilaufgabe c) 4 BE - Bearbeitungszeit: 9:20
Berechnen Sie die Größe des erforderlichen Drehwinkels.
Der Torwart führt den Abstoß aus. Der höchste Punkt der Flugbahn des Balls wird im Modell durch den Punkt \(H\left( {50\left| {70\left| {15} \right.} \right.} \right)\) beschrieben.
4. Teilaufgabe d) 7 BE - Bearbeitungszeit: 16:20
Ermitteln Sie eine Gleichung der durch die Punkte W1, W2 und K2 festgelegten Ebene E in Normalenform und weisen Sie nach, dass H unterhalb von E liegt.
Mögliches Teilergebnis: \(E:{x_2} + 5 \cdot {x_3} - 150 = 0\)
5. Teilaufgabe e) 2 BE - Bearbeitungszeit: 4:40
Machen Sie plausibel, dass folgende allgemeine Schlussfolgerung falsch ist: „Liegen der Startpunkt und der anvisierte höchste Punkt einer Flugbahn des Balls im Modell unterhalb der Ebene E, so kann der Ball entlang seiner Bahn die Seile, die durch \(\left[ {{W_1}{K_2}} \right]{\rm{ und }}\left[ {{W_2}{K_2}} \right]\) beschrieben werden, nicht berühren.“