BMBWF - AG 4.1 .. AG 4.2: Trigonometrie
Aufgabe 1059
AHS - 1_059 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rechtwinkeliges Dreieck
Gegeben ist ein rechtwinkeliges Dreieck wie in nebenstehender Skizze.
- Aussage 1: \(\tan \left( \alpha \right) = \dfrac{5}{{13}}\)
- Aussage 2: \(\cos \left( \alpha \right) = \dfrac{{13}}{{12}}\)
- Aussage 3: \(\sin \left( \gamma \right) = \dfrac{5}{{13}}\)
- Aussage 4: \(\cos \left( \gamma \right) = \dfrac{{12}}{{13}}\)
- Aussage 5: \(\tan \left( \gamma \right) = \dfrac{{12}}{5}\)
Aufgabenstellung:
Welche der obenstehenden Aussagen sind für das abgebildete Dreieck zutreffend? Kreuzen Sie die beiden zutreffenden Aussagen an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1092
AHS - 1_092 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winkelfunktion
Gegeben ist ein rechtwinkeliges Dreieck:
Aufgabenstellung:
Geben Sie tan ψ in Abhängigkeit von den Seitenlängen u, v und w an!
Aufgabe 1134
AHS - 1_134 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rechtwinkeliges Dreieck
Von einem rechtwinkeligen Dreieck ABC sind die Längen der Seiten a und c gegeben.
Aufgabenstellung:
Geben Sie eine Formel für die Berechnung des Winkels α an!
Aufgabe 1219
AHS - 1_219 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Dennis Tito
Dennis Tito, der 2001 als erster Weltraumtourist unterwegs war, sah die Erdoberfläche unter einem Sehwinkel von 142°.
Aufgabenstellung:
Berechnen Sie, wie hoch (h) über der Erdoberfläche sich Dennis Tito befand, wenn vereinfacht die Erde als Kugel mit einem Radius r = 6 370 km angenommen wird! Geben Sie das Ergebnis auf ganze Kilometer gerundet an!
Aufgabe 1220
AHS - 1_220 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Raumdiagonale beim Würfel
Gegeben ist ein Würfel mit der Seitenlänge a
Aufgabenstellung:
Berechnen Sie die Größe des Winkels φ zwischen einer Raumdiagonalen und einer Seitenflächendiagonalen eines Würfels!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1221
AHS - 1_221 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sonnenradius
Die Sonne erscheint von der Erde aus unter einem Sehwinkel von α ≈ 0,52°. Die Entfernung der Erde vom Mittelpunkt der Sonne beträgt ca. \(150 \cdot {10^6}{\rm{ km}}\).
Aufgabenstellung - Bearbeitungszeit 05:40
Geben Sie eine Formel zur Berechnung des Sonnenradius an und berechnen Sie den Radius!
Aufgabe 1344
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Definition der Winkelfunktionen
Die nachstehende Abbildung zeigt ein rechtwinkeliges Dreieck PQR.
- Aussage 1: \(\sin \alpha = \dfrac{p}{r}\)
- Aussage 2: \(\sin \alpha = \dfrac{q}{r}\)
- Aussage 3: \(\tan \beta = \dfrac{p}{q}\)
- Aussage 4: \(\tan \alpha = \dfrac{r}{p}\)
- Aussage 5: \(\cos \beta = \dfrac{p}{r}\)
Aufgabenstellung:
Kreuzen Sie jene beiden Gleichungen an, die für das dargestellte Dreieck gelten!
Aufgabe 1368
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Steigungswinkel
Das nachstehend abgebildete Verkehrszeichen besagt, dass eine Straße auf einer horizontalen Entfernung von 100 m um 7 m an Höhe gewinnt.
Aufgabenstellung:
Geben Sie eine Formel zur Berechnung des Gradmaßes des Steigungswinkels α dieser Straße an!
Aufgabe 1416
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sehwinkel
Der Sehwinkel ist derjenige Winkel, unter dem ein Objekt von einem Beobachter wahrgenommen wird. Die nachstehende Abbildung verdeutlicht den Zusammenhang zwischen dem Sehwinkel α, der Entfernung r und der realen („wahren“) Ausdehnung g eines Objekts in zwei Dimensionen.
Quelle: http://upload.wikimedia.org/wikipedia/commons/d/d3/ScheinbareGroesse.png [22.01.2015] (adaptiert)
Aufgabenstellung:
Geben Sie eine Formel an, mit der die reale Ausdehnung g dieses Objekts mithilfe von \(\alpha\) und r berechnet werden kann!
g =
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1440
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sonnenhöhe
Unter der Sonnenhöhe φ versteht man denjenigen spitzen Winkel, den die einfallenden Sonnenstrahlen mit einer horizontalen Ebene einschließen. Die Schattenlänge s eines Gebäudes der Höhe h hangt von der Sonnenhöhe φ ab (s, h in Metern).
Aufgabenstellung:
Geben Sie eine Formel an, mit der die Schattenlange s eines Gebäudes der Hohe h mithilfe der Sonnenhöhe φ berechnet werden kann!
Aufgabe 1464
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Standseilbahn Salzburg
Die Festungsbahn Salzburg ist eine Standseilbahn in der Stadt Salzburg mit konstanter Steigung. Die Bahn auf den dortigen Festungsberg ist die älteste in Betrieb befindliche Seilbahn dieser Art in Osterreich. Die Standseilbahn legt eine Wegstrecke von 198,5 m zurück und überwindet dabei einen Höhenunterschied von 96,6 m.
Anmerkung: Die Original-Angabe enthält ein Foto von der Standseilbahn in Salzburg, auf dem man erkennen kann, dass die Bahn in einem Winkel gegen die Waagrechte zur Burg hinauf fährt. Wir ersetzen dieses Foto aus Urheberrechtsgründen durch folgende Skizze, wodurch das Beispiel aber vereinfacht wird:
Aufgabenstellung
Berechnen Sie den Winkel α, unter dem die Gleise der Bahn gegen die Horizontale geneigt sind!
Aufgabe 1488
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vermessung einer unzugänglichen Steilwand
Ein Steilwandstuck CD mit der Höhe \(h = \overline {CD}\) ist unzugänglich. Um h bestimmen zu können, werden die Entfernung e = 6 Meter und zwei Winkel α = 24° und β = 38° gemessen. Der Sachverhalt wird durch die nachstehende (nicht maßstabgetreue) Abbildung veranschaulicht.
Aufgabenstellung:
Berechnen Sie die Höhe h des unzugänglichen Steilwandstücks in Metern!