Lichtgeschwindigkeit im Vakuum
Formel
Lichtgeschwindigkeit im Vakuum
Auf Grund der hohen Geschwindigkeit von Licht bei irdischen Entfernungen war man seit der Antike fälschlicher Weise davon ausgegangen, dass sich Licht mit unendlich hoher Geschwindigkeit ausbreitet.
Im Jahr 1676 gelange es Ole Römer erstmals die Höhe der endlichen Lichtgeschwindigkeit wie folgt zu quantifizieren: Das Licht des alle 42,5 Minuten gleichmäßig in den Schatten des Planeten Jupiter eintauchenden Mondes Io benötigt ca. 35 Minuten bis zur Erde. Auf Grund des Umlaufs der Erde um die Sonne variiert die Entfernung, die das Licht von Io bis zur Erde zurücklegen muss +/- 1 Mal um den Abstand von der Erde zur Sonne (149,6*109 km). Innerhalb von 6 Monaten verzögert sich so scheinbar der Eintritt von Io in den Schatten von Jupiter um 1000 Sekunden, um dann in den nächsten 6 Monaten die 1000 Sekunden wieder aufzuholen, da das Licht abhängig vom Umlauf der Erde um die Sonne einen unterschiedlich langen Weg zurücklegen muss. Dividiert man also die 2 fache Entfernung von der Erde zur Sonne durch diese 1000 Sekunden, so kann man die Lichtgeschwindigkeit errechnen.
\({\rm{Lichtgeschwindigkeit = }}\dfrac{{{\rm{Weg}}}}{{{\rm{Zeit}}}} = \dfrac{{2 \cdot 149,6 \cdot {{10}^9}{\rm{km}}}}{{1000s}} = 2,992 \cdot {10^8}\dfrac{{{\rm{km}}}}{{\rm{s}}}\)
Heute ist der Ansatz der Umgekehrte, d.h. man schließt nicht von der Entfernung in Meter und einer Zeitmessung auf die Geschwindigkeit, sonder die Lichtgeschwindigkeit ist als Universalkonstante vorgegeben und 1 Meter ist als jene Entfernung definiert, die das Licht in 1/299 792 458 Sekundenbruchteil zurücklegt.
Da das Licht eine elektromagnetische Welle ist, sind die Lichtgeschwindigkeit, die elektrische und die magnetische Feldkonstante aneinander gemäß folgender Formel gekoppelt:
\({c_0} = \dfrac{1}{{\sqrt {{\varepsilon _0} \cdot {\mu _0}} }} = 3 \cdot {10^8}\dfrac{m}{s}\)
\({c_0}\) | Lichtgeschwindigkeit im Vakuum | |
\({\varepsilon _0}\) | Elektrische Feldkonstante | \({\varepsilon _0} = 8,854 \cdot {10^{ - 12}}\dfrac{{As}}{{Vm}}\) |
\({\mu _0}\) | Magnetische Feldkonstante | \({\mu _0} = 4\pi \cdot {10^{ - 7}}\dfrac{N}{{{A^2}}}\) |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Wissenspfad
Zur aktuellen Lerneinheit empfohlenes Vorwissen
Strahlen- und Wellentheorie des Lichtes | Das Licht ist eine elektromagnetische Welle, deren Welle-Teilchen-Dualismus seine Erklärung in der Quantenmechanik findet. Photonen sind die Quanten der elektromagnetischen Wechselwirkung. |
Aktuelle Lerneinheit
Lichtgeschwindigkeit im Vakuum | Die Lichtgeschwindigkeit entspricht der Ausbreitungsgeschwindigkeit von Licht im Vakuum und beträgt endliche 299 792 458 m/s. Aus der Lichtgeschwindigkeit leitet sich heute die Länge von 1m ab. |
Verbreitere dein Wissen zur aktuellen Lerneinheit
Compton-Effekt | Als Compton Effekt bezeichnet man die Vergrößerung der Wellenlänge eines Photons bei der Streuung an einem Teilchen (Elektron) |
Energie einer elektromagnetischen Welle | Die Energie einer elektromagnetischen Welle der Frequenz f ist quantisiert. Sie errechnet sich als das Produkt aus dem planckschen Wirkungsquantum und der Frequenz |
Wärmestrahlung | Ein Körper emittiert elektromagnetische Strahlung, sobald seine Temperatur über dem absoluten Nullpunkt liegt |
Lumineszenzstrahlung | Die Luminiszenzstrahlung ist eine nicht-thermische Strahlung |
Wiensche Verschiebungsgesetz | Das Wien'sche Verschiebungsgesetz sagt etwas über die Lage vom Maximum der Strahlungsintensität aus |
Stefan-Boltzmann’sches Strahlungsgesetz | Die Strahlungsleistung (Intensität der Temperaturstrahlung) eines schwarzen Körpers ist proportional zur vierten Potenz der absoluten Temperatur des Körpers. |
Kirchhoffsches Strahlungsgesetz | Das Kirchhoff’sche Strahlungsgesetz stellt den Zusammenhang zwischen Emission und Absorption eines Temperaturstrahlers im thermischen Gleichgewichts her |
Emissionsverhältnis | Das spektrale Emissionsverhältnis \(\varepsilon \left( \tau \right)\) ist frequenzabhängig und errechnet sich als das Verhältnis von emittierter Wäremstrahlung des Körpers zur emittierten Wärmestrahlung eines schwarzen Körpers |
Licht durchquert ein Medium | Wenn Licht ein Medium durchquert unterscheidet man zwischen Transmission, Reflexion, Streuung und Absorption |
Sichtbares Licht | Das sichtbare Licht ist eine elektromagnetische Welle, die durch ihre Frequenz bzw. ihre Wellenlänge charakterisiert wird und durch das menschliche Auge erfasst werden kann |
Spektrum elektromagnetischer Wellen | Das elektromagnetische Spektrum ist eine Einteilung der elektromagnetischen Wellen nach deren Wellenlänge bzw. deren Frequenz |
Wellenfunktion eines freien Teilchens | In der Quantenmechanik wird einem Teilchen zur Positionsbestimmung die komplexe Wellenfunktion Ψ(x, t) zugeordnet. |
Wellengleichung | Die Wellengleichung beschreibt eine Feldstärke an einem Ort in Abhängigkeit von der Zeit. Wir unterscheiden zwischen der ein- und der dreidimensionalen Wellengleichung. |