Varianz der Binomialverteilung
\(Var\left( x \right) = n \cdot p \cdot \left( {1 - p} \right)\)
Hier findest du folgende Inhalte
Formeln
Binomialverteilung
Die Binomialverteilung ist eine diskrete Verteilung, der ein mehrstufigen Zufallsexperiment zugrunde liegt. Sie entsteht, wenn man ein Bernoulli Experiment (einstufiges Experiment, welches nur 2 mögliche Ausgänge hat) n Mal gleich und unverändert wiederholt. Die Grundgesamtheit ändert sich also im Laufe der Wiederholungen nicht, d.h. es handelt sich um ein „Ziehen mit Zurücklegen“.
X heißt binomialverteilt mit den 2 Parametern n und p:
- n … Anzahl der Ziehungen bzw. der Wiederholungen vom Zufallsexperiment, wobei n ∈ N
- p ... Laplace-Wahrscheinlichkeit für das Auftreten vom Ereignis X, bei jedem einzelnen der n Versuche, mit 0 < p < 1
- k ... Anzahl der Treffer, d.h. das Ereignis X tritt genau k mal ein, mit k=0, 1, 2, ... n
- X ... Zufallsvariable bzw. Trefferzahl, d.h. das Ereignis X tritt genau, weniger, öfter mindestens,... k mal ein, mit k=0, 1, 2, ... n, wobei die Anzahl der unabhängigen Bernoulli-Versuche n beträgt und p die Erfolgswahrscheinlichkeit beschreibt.
Wahrscheinlichkeitsfunktion der Binomialverteilung
Die Wahrscheinlichkeitsfunktion der Binomialverteilung gibt die Wahrscheinlichkeit dafür an, dass es genau k Treffer gibt:
\(f\left( k \right) = P\left( {X = k} \right) = \left( {\begin{array}{*{20}{c}} n\\ k \end{array}} \right) \cdot {p^k} \cdot {\left( {1 - p} \right)^{n - k}}\) für k=0, 1, ..,n
Zur Erinnerung: Der Binomialkoeffizient errechnet sich zu: \(\left( {\begin{array}{*{20}{c}} n\\ k \end{array}} \right) = \dfrac{{n!}}{{k! \cdot \left( {n - k} \right)!}}\)
Bestimmung der Wahrscheinlichkeit einer Binomialverteilung bei unterschiedlichen Grenzen
Ungleichungen im Sprachgebrauch:
- Weniger entspricht <
- Höchstens entspricht \( \le \)
- Mehr entspricht >
- Mindestens entspricht \( \ge \)
genau k Treffer | \(P(X = k) = \left( {\begin{array}{*{20}{c}} n\\ k \end{array}} \right) \cdot {p^k} \cdot {\left( {1 - p} \right)^{\left( {n - k} \right)}}\) |
höchstens k Treffer | \(P\left( {X \le k} \right) = \sum\limits_{i = 0}^k {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} \) |
weniger als k Treffer | \(P\left( {X < k} \right) = \sum\limits_{i = 0}^{k - 1} {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} \) |
mindestens k Treffer | \(P\left( {X \ge k} \right) = 1 - P\left( {X \le k - 1} \right) = 1 - \sum\limits_{i = 0}^{k - 1} {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} \) |
mehr als k Treffer | \(P\left( {X > k} \right) = 1 - P\left( {X \le k} \right) = 1 - \sum\limits_{i = 0}^k {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} \) |
mindestens k aber höchstens m Treffer | \(\begin{array}{l} P\left( {k \le X \ge m} \right) = P\left( {X \le m} \right) - P\left( {X \le k - 1} \right) = \\ = \sum\limits_{i = 0}^m {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} - \sum\limits_{i = 0}^{k - 1} {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} \end{array}\) |
Illustration zur Veranschaulichung
Wahrscheinlichkeitsfunktion der Binomialverteilung mit den Parametern n=10 Wiederholungen und einer Erfolgswahrscheinlichkeit von p=0,3
Laplace Bedingung
Wenn die Laplace Bedingung \(\sigma = \sqrt {n \cdot p \cdot \left( {1 - p} \right)} > 3\) erfüllt ist, kann man die Binomialverteilung durch die Normalverteilung annähern.
Sigma-Umgebungen
Der Erwartungswert ist der Wert mit der größten Wahrscheinlichkeit. Links und rechts vom Erwartungswert gruppieren sich die restlichen binomialverteilten Wahrscheinlichkeiten. Wenn die Streuung groß genug ist, kann man die Binomialverteilung durch die Normalverteilung annähern. Um zu prüfen ob diese Näherung zulässig ist, verwendet man die Laplace Bedingung.
Radius der Sigma Umgebung (also Vielfachen der Standardabweichung):
\(\begin{array}{l} 1\sigma \buildrel \wedge \over = P\left( {\mu - \sigma \le X \le \mu + \sigma } \right) \approx 68\% \\ 2\sigma \buildrel \wedge \over = P\left( {\mu - 2\sigma \le X \le \mu + 2\sigma } \right) \approx 95,5\% \\ 3\sigma \buildrel \wedge \over = P\left( {\mu - 3\sigma \le X \le \mu + 3\sigma } \right) \approx 99,7\% \end{array}\)
Verteilungsfunktion der Binomialverteilung
Verteilungsfunktion der Binomialverteilung gibt die Wahrscheinlichkeit dafür an, dass es höchstens k Treffer gibt:
\(F\left( k \right) = P\left( {0 \le X \le k} \right) = \sum\limits_{i = 0}^k {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right)} \cdot {p^i} \cdot {\left( {1 - p} \right)^{n - i}}\)
Erwartungswert der Binomialverteilung
Der Erwartungswert eine Binomialverteilung, deren Zufallsvariable nur 2 Werte (Treffer / Niete) annehmen kann und deren Trefferwahrscheinlichkeit immer p ist, ergibt sich bei n unabhängigen Bernoulli-Versuchen aus dem Produkt von n und p.
\(E\left( X \right) = \mu = n \cdot p\)
Dabei handelt es sich um eine Vereinfachung der nachfolgenden Formel für den Erwartungswert einer diskreten Zufallsvariablen, die mehrere Werte annehmen kann.
Erwartungswert einer diskreten Verteilung
Der Erwartungswert einer diskreten Verteilung, deren Zufallsvariable mehrere Werte X=xi annehmen kann, die ihrerseits mit unterschiedlicher Wahrscheinlichkeit P(X=xi) vorkommen entspricht der Summe der Werte der Zufallsvariablen X=xi multipliziert mit der Wahrscheinlichkeit für das Eintreten von xi also P(X=xi).
\(E(X) = \sum\limits_{i = 1}^n {{x_i} \cdot P\left( {X = {x_i}} \right)} = \mu \)
\(P\left( E \right) = \dfrac{{{\text{Anzahl günstiger Fälle}}}}{{{\text{Anzahl mölicher Fälle}}}}\)
Varianz der Binomialverteilung
Die Varianz einer Binomialverteilung mit den Parametern n und p ist gegeben durch:
\({\sigma ^2} = Var\left( X \right) = n \cdot p \cdot \left( {1 - p} \right)\)
Hierbei ist X eine Zufallsvariable, welche die Anzahl der Treffer in n unabhängigen Bernoulli-Versuchen mit Erfolgswahrscheinlichkeit p beschreibt.
Standardabweichung der Binomialverteilung
\(\sigma = \sqrt {Var(X)} = \sqrt {n \cdot p \cdot \left( {1 - p} \right)} \)
Binomialverteilung → Normalverteilung
Die Binomialverteilung kann bei großen Stichproben, also bei relativ hohem n, durch die Normalverteilung ersetzt werden. Wobei dann für die Normalverteilung - so wie bei der Binomialverteilung - wie folgt gilt:
- Erwartungswert bei großem n: \(E\left( x \right) = \mu = n \cdot p\)
- Standardabweichung bei großem n: \(\sigma = \sqrt {Var(x)} = \sqrt {n \cdot p \cdot \left( {1 - p} \right)} \)
Hat eine Zufallsvariable X eine Normalverteilung mit beliebigen μ und σ, so kann man die Werte der Normalverteilung mit \(z = \dfrac{{X - \mu }}{\sigma }\) in eine Standardnormalverteilung umrechnen.
Das zugehörige \(\Phi \left( {{z}} \right)\) entnimmt man anschließend der entsprechenden Tabelle für die Standardnormalverteilung.
Bei 2 zum Erwartungswert symmetrisch liegenden Wahrscheinlichkeiten kann man den Umstand, dass \(\left| {{z_{oG}}} \right| = \left| {{z_{uG}}} \right|\) ausnützen und aus speziellen Tabellen für die Standardnormalverteilung direkt den Wert für das Intervall D ablesen.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1495
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 23. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parameter einer Binomialverteilung
Ein Zufallsexperiment wird durch eine binomialverteilte Zufallsvariable X beschrieben. Diese hat die Erfolgswahrscheinlichkeit p = 0,36 und die Standardabweichung σ = 7,2.
Aufgabenstellung:
Berechnen Sie den zugehörigen Parameter n (Anzahl der Versuche)!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.