Bayern Mathematik Abitur 2016 - Prüfungsteil A+B - ohne CAS - Gruppe 2
Aufgabe 6041
Abitur 2016 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Gegeben ist die Funktion \(f:x \mapsto \dfrac{{\ln x}}{{{x^2}}}\) mit maximalem Definitionsbereich D.
1. Teilaufgabe a1) 1 BE - Bearbeitungszeit: 2:20
Geben Sie D an.
2. Teilaufgabe a1) 1 BE - Bearbeitungszeit: 2:20
Geben Sie die Nullstelle von f an.
3. Teilaufgabe a1) 1 BE - Bearbeitungszeit: 2:20
Bestimmen Sie \(\mathop {\lim }\limits_{x \to 0} f\left( x \right)\)
4. Teilaufgabe b) 4 BE - Bearbeitungszeit: 9:20
Ermitteln Sie die x-Koordinate des Punkts, in dem der Graph von f eine waagrechte Tangente hat.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6042
Abitur 2016 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Geben Sie jeweils den Term und den Definitionsbereich einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt.
1. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Der Punkt \(\left( {2\left| 0 \right.} \right)\) ist ein Wendepunkt des Graphen von g.
2. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Der Graph der Funktion h ist streng monoton fallend und rechtsgekrümmt.
Aufgabe 6040
Abitur 2016 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Die Abbildung zeigt den Graphen der in \({\Bbb R}\) definierten Funktion f.
1. Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie mithilfe der Abbildung einen Näherungswert für \(\int\limits_3^5 {f\left( x \right)} \,\,dx\)
Die Funktion F ist die in \({\Bbb R}\) definierte Stammfunktion von f mit \(F\left( 3 \right) = 0\)
2. Teilaufgabe b) 1 BE - Bearbeitungszeit: 2:20
Geben Sie mithilfe der Abbildung einen Näherungswert für die Ableitung von F an der Stelle x=2 an.
3. Teilaufgabe c) 2 BE - Bearbeitungszeit: 4:40
Zeigen Sie, dass \(F\left( b \right) = \int\limits_3^b {f\left( x \right)} \,\,dx{\text{ mit }}b \in {\Bbb R}\)
Aufgabe 6043
Abitur 2016 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Die Abbildung zeigt den Graphen Gk einer in \({\Bbb R}\) definierten Funktion k.
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Skizzieren Sie in die Abbildung den Graphen der zugehörigen Ableitungsfunktion Gk‘ .
Berücksichtigen Sie dabei insbesondere einen Näherungswert für die Steigung des Graphen Gk an dessen Wendepunkt \(\left( {0\left| { - 3} \right.} \right)\) sowie die Nullstelle von k‘
Aufgabe 6045
Abitur 2016 Gymnasium Bayern - Prüfungsteil A - Stochastik
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Bei einem Zufallsexperiment wird eine ideale Münze so lange geworfen, bis zum zweiten Mal Zahl (Z) oder zum zweiten Mal Wappen (W) oben liegt. Als Ergebnismenge wird festgelegt:
{ZZ; WW; ZWZ; ZWW; WZZ; WZW}.
1. Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie, dass dieses Zufallsexperiment kein Laplace-Experiment ist.
Die Zufallsgröße X ordnet jedem Ergebnis die Anzahl der entsprechenden Münzwürfe zu.
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Berechnen Sie den Erwartungswert von X.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6046
Abitur 2016 Gymnasium Bayern - Prüfungsteil A - Stochastik
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
An einem P-Seminar nehmen acht Mädchen und sechs Jungen teil, darunter Anna und Tobias. Für eine Präsentation wird per Los aus den Teilnehmerinnen und Teilnehmern ein Team aus vier Personen zusammengestellt.
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Geben Sie zu jedem der folgenden Ereignisse einen Term an, mit dem die Wahrscheinlichkeit des Ereignisses berechnet werden kann.
- A: „Anna und Tobias gehören dem Team an.“
- B: „Das Team besteht aus gleich vielen Mädchen und Jungen.“
2. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit durch den folgenden Term berechnet werden kann:
\(\dfrac{{\left( {\begin{array}{*{20}{c}}
{14}\\
4
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
6\\
4
\end{array}} \right)}}{{\left( {\begin{array}{*{20}{c}}
{14}\\
4
\end{array}} \right)}}\)
Aufgabe 6049
Abitur 2016 Gymnasium Bayern - Prüfungsteil A - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Gegeben sind die Ebene \(E:2 \cdot {x_1} + {x_2} + 2 \cdot {x_3} = 6\) sowie die Punkte \(P\left( {1\left| 0 \right.\left| 2 \right.} \right){\text{ und }}Q\left( {5\left| {2\left| 6 \right.} \right.} \right)\)
1. Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Zeigen Sie, dass die Gerade durch die Punkte P und Q senkrecht zur Ebene E verläuft.
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:20
Die Punkte P und Q liegen symmetrisch zu einer Ebene F. Ermitteln Sie eine Gleichung von F.
Aufgabe 6048
Abitur 2016 Gymnasium Bayern - Prüfungsteil A - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Gegeben sind die Punkte \(A\left( { - 2\left| {1\left| 4 \right.} \right.} \right){\text{ und }}B\left( { - 4\left| {0\left| 6 \right.} \right.} \right)\)
1. Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Koordinaten des Punkts C so, dass gilt: \(\overrightarrow {CA} = 2 \cdot \overrightarrow {AB} \)
Durch die Punkte A und B verläuft die Gerade g. Betrachtet werden Geraden, für welche die Bedingungen I und II gelten:
- I Jede dieser Geraden schneidet die Gerade g orthogonal.
- II Der Abstand jeder dieser Geraden vom Punkt A beträgt 3.
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Ermitteln Sie eine Gleichung für eine dieser Geraden.
Aufgabe 6052
Abitur 2016 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Im Rahmen eines W-Seminars modellieren Schülerinnen und Schüler einen Tunnelquerschnitt, der senkrecht zum Tunnelverlauf liegt. Dazu beschreiben sie den Querschnitt der Tunnelwand durch den Graphen einer Funktion in einem Koordinatensystem. Der Querschnitt des Tunnelbodens liegt dabei auf der x-Achse, sein Mittelpunkt M im Ursprung des Koordinatensystems; eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Realität. Für den Tunnelquerschnitt sollen folgende Bedingungen gelten:
- I Breite des Tunnelbodens: b=10 m
- II Höhe des Tunnels an der höchsten Stelle: h=5 m
- III Der Tunnel ist auf einer Breite von mindestens 6m mindestens 4m hoch.
1. Teilaufgabe a) 6 BE - Bearbeitungszeit: 14:00
Eine erste Modellierung des Querschnitts der Tunnelwand verwendet die Funktion
\(p:x \mapsto - 0,2 \cdot {x^2} + 5{\text{ mit }}{{\text{D}}_p} = \left[ { - 5;5} \right]\).
Zeigen Sie, dass die Bedingungen I und II in diesem Modell erfüllt sind. Berechnen Sie die Größe des spitzen Winkels, unter dem bei dieser Modellierung die linke Tunnelwand auf den Tunnelboden trifft.
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Die Schülerinnen und Schüler untersuchen nun den Abstand d(x) der Graphenpunkte \({P_x}\left( {x\left| {p\left( x \right)} \right.} \right)\) vom Ursprung des Koordinatensystems. Zeigen Sie, dass
\(d\left( x \right) = \sqrt {0,04 \cdot {x^4} - {x^2} + 25} \) gilt.
3. Teilaufgabe c) 5 BE - Bearbeitungszeit: 11:40
Es gibt Punkte des Querschnitts der Tunnelwand, deren Abstand zu M minimal ist. Bestimmen Sie die x-Koordinaten der Punkte Px , für die d(x) minimal ist, und geben Sie davon ausgehend diesen minimalen Abstand an.
4. Teilaufgabe a) 5 BE - Bearbeitungszeit: 11:40
(Im Abitur als separate Aufgabe geführt)
Eine zweite Modellierung des Querschnitts der Tunnelwand verwendet eine Kosinusfunktion vom Typ
\(k:x \mapsto 5 \cdot \cos \left( {c \cdot x} \right){\text{ mit }}c \in {\Bbb R}{\text{ und }}{{\text{D}}_k} = \left[ { - 5;5} \right]\),
bei der offensichtlich Bedingung II erfüllt ist. Bestimmen Sie c so, dass auch Bedingung I erfüllt ist, und berechnen Sie damit den Inhalt der Querschnittsfläche des Tunnels.
Zur Kontrolle: \(c = \dfrac{\pi }{{10}}\) und Inhalt der Querschnittsfläche: \(\dfrac{{100}}{\pi }{{\text{m}}^2}\)
5. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Zeigen Sie, dass Bedingung III weder bei einer Modellierung mit p aus Aufgabe 1 noch bei einer Modellierung mit k erfüllt ist.
6. Teilaufgabe a) 5 BE - Bearbeitungszeit: 11:40
(Im Abitur als separate Aufgabe geführt)
Eine dritte Modellierung des Querschnitts der Tunnelwand, bei der ebenfalls die Bedingungen I und II erfüllt sind, verwendet die Funktion
\(f:x \mapsto \sqrt {25 - {x^2}} {\text{ mit }}{D_f} = \left[ { - 5;5} \right]\)
Begründen Sie, dass in diesem Modell jeder Punkt des Querschnitts der Tunnelwand von der Bodenmitte M den Abstand 5m hat. Zeichnen Sie den Graphen von f in ein Koordinatensystem ein (Platzbedarf im Hinblick auf spätere Aufgaben: \(\left( { - 5 \leqslant x \leqslant 9} \right)\,\,\,\,\,\left( { - 1 \leqslant y \leqslant 13} \right)\) und begründen Sie, dass bei dieser Modellierung auch Bedingung III erfüllt ist.
7. Teilaufgabe b) 5 BE - Bearbeitungszeit: 11:40
Betrachtet wird nun die Integralfunktion
\(F:x \mapsto \int\limits_0^x {f\left( t \right)} \,\,dt{\text{ mit }}{D_f} = \left[ { - 5;5} \right]\)
Zeigen Sie mithilfe einer geometrischen Überlegung, dass \(F\left( 5 \right) = \dfrac{{25}}{4} \cdot \pi \) gilt.
Einer der Graphen A, B und C ist der Graph von F. Entscheiden Sie, welcher dies ist, und begründen Sie Ihre Entscheidung, indem Sie erklären, warum die beiden anderen Graphen nicht infrage kommen.
8. Teilaufgabe c) 2 BE - Bearbeitungszeit: 4:40
Berechnen Sie, um wie viel Prozent der Inhalt der Querschnittsfläche des Tunnels bei einer Modellierung mit f von dem in Aufgabe 2a berechneten Wert abweicht.
9. Teilaufgabe d) 4 BE - Bearbeitungszeit: 9:20
Der Tunnel soll durch einen Berg führen. Im betrachteten Querschnitt wird das Profil des Berghangs über dem Tunnel durch eine Gerade g mit der Gleichung
\(y = - \dfrac{4}{3} \cdot x + 12\) modelliert. Zeigen Sie, dass die Tangente t an den Graphen von f im Punkt \(R\left( {4\left( {f\left( 4 \right)} \right)} \right)\) parallel zu g verläuft. Zeichnen Sie g und t in das Koordinatensystem aus Aufgabe 3a ein.
10. Teilaufgabe e) 3 BE - Bearbeitungszeit: 7:00
Der Punkt R aus Aufgabe 3d entspricht demjenigen Punkt der Tunnelwand, der im betrachteten Querschnitt vom Hangprofil den kleinsten Abstand e in Metern hat. Beschreiben Sie die wesentlichen Schritte eines Verfahrens zur rechnerischen Ermittlung von e.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6054
Abitur 2016 Gymnasium Bayern - Prüfungsteil B - Stochastik
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Nach einem Bericht zur Allergieforschung aus dem Jahr 2008 litt damals in Deutschland jeder vierte bis fünfte Einwohner an einer Allergie. 41 % aller Allergiker reagierten allergisch auf Tierhaare.
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Kann aus diesen Aussagen gefolgert werden, dass 2008 mindestens 10 % der Einwohner Deutschlands auf Tierhaare allergisch reagierten? Begründen Sie Ihre Antwort.
Aufgabe 6055
Abitur 2016 Gymnasium Bayern - Prüfungsteil B - Stochastik
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Nach einer aktuellen Erhebung leiden 25 % der Einwohner Deutschlands an einer Allergie. Aus den Einwohnern Deutschlands werden n Personen zufällig ausgewählt.
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Bestimmen Sie, wie groß n mindestens sein muss, damit mit einer Wahrscheinlichkeit von mehr als 99 % mindestens eine der ausgewählten Personen an einer Allergie leidet.
Im Folgenden ist n=200 . Die Zufallsgröße X beschreibt die Anzahl der Personen unter den ausgewählten Personen, die an einer Allergie leiden.
2. Teilaufgabe b) 5 BE - Bearbeitungszeit: 11:40
Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Wert der binomialverteilten Zufallsgröße X höchstens um eine Standardabweichung von ihrem Erwartungswert abweicht.
Aufgabe 6056
Abitur 2016 Gymnasium Bayern - Prüfungsteil B - Stochastik
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Ein Pharmaunternehmen hat einen Hauttest zum Nachweis einer Tierhaarallergie entwickelt. Im Rahmen einer klinischen Studie zeigt sich, dass der Hauttest bei einer aus der Bevölkerung Deutschlands zufällig ausgewählten Person mit einer Wahrscheinlichkeit von 39,5% ein positives Testergebnis liefert. Leidet eine Person an einer Tierhaarallergie, so ist das Testergebnis mit einer Wahrscheinlichkeit von 85 % positiv. Das Testergebnis ist jedoch bei einer Person, die nicht an einer Tierhaarallergie leidet, mit einer Wahrscheinlichkeit von 35 % ebenfalls positiv.
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Ermitteln Sie, welcher Anteil der Bevölkerung Deutschlands demnach allergisch auf Tierhaare reagiert. (Ergebnis: 9%)
2. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Eine aus der Bevölkerung Deutschlands zufällig ausgewählte Person wird getestet; das Testergebnis ist positiv. Berechnen Sie die Wahrscheinlichkeit dafür, dass diese Person tatsächlich an einer Tierhaarallergie leidet.
3. Teilaufgabe c) 2 BE - Bearbeitungszeit: 4:40
Aus der Bevölkerung Deutschlands wird eine Person zufällig ausgewählt und getestet. Beschreiben Sie das Ereignis, dessen Wahrscheinlichkeit im Sachzusammenhang mit dem Term \(0,09 \cdot 0,15 + 0,91 \cdot 0,35\) berechnet wird.