Österreichische AHS Matura - 2021.05.21 - 4 Typ II Beispiele - 120 Minuten Rechenzeit
Aufgabe 3023
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-2-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Koffein
Teil a
Lea trinkt eine Tasse Kaffee. In der nachstehenden Abbildung ist der Graph der Funktion K dargestellt, die modellhaft die Konzentration K(t) von Koffein in Leas Blut in Abhängigkeit von der Zeit t nach dem Trinken des Kaffees beschreibt (t in h, K(t) in mg/L).
Abbildung fehlt
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie mithilfe der obigen Abbildung, wie viele Minuten t nach dem Trinken des Kaffees die maximale Konzentration von Koffein im Blut auftritt.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Ergänzen Sie die Textlücken im nachstehenden Satz durch Ankreuzen des jeweils zutreffenden Satzteils so, dass eine richtige Aussage entsteht.
[0 / ½ / 1 P.]
Die Funktion K hat im Intervall (0; 0,8) _____1_____ und in diesem Intervall ändert sich das Vorzeichen der _____2_____ .
- Satzteil 1_1: eine Wendestelle
- Satzteil 1_2: eine Extremstelle
- Satzteil 1_3: eine Nullstelle
- Satzteil 2_1: Krümmung
- Satzteil 2_2: Steigung
- Satzteil 2_3: Funktionswerte
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 3024
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-2-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Koffein
Teil b
Die Löslichkeit von Koffein in Wasser gibt an, wie viel Gramm Koffein pro Liter (g/L) maximal gelöst werden können. Die Löslichkeit ist temperaturabhängig. Sie lasst sich näherungsweise durch die Funktion f beschreiben.
\(f\left( T \right) = 6,42 \cdot {e^{0,05 \cdot T}}{\text{ mit }}0 \leqslant T \leqslant 90\)
T | Temperatur in °C |
f(t) | Löslichkeit von Koffein in Wasser bei der Temperatur T in g/L |
Jemand behauptet: „Bei einem Anstieg der Temperatur um 10 °C nimmt die Löslichkeit von Koffein in Wasser etwa auf das 1,65-Fache zu.“
1. Teilaufgabe - Bearbeitungszeit 05:40
Überprüfen Sie rechnerisch, ob diese Behauptung richtig ist.
[0 / 1 P.]
Folgende Gleichung wird aufgestellt:
\(2 \cdot 6,42 = 6,42 \cdot {e^{0,05 \cdot T}}\)
2. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie die Lösung dieser Gleichung im gegebenen Sachzusammenhang.
[0 / 1 P.]
Aufgabe 3025
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-2-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
CO2 und Klimaschutz
In den letzten Jahrzehnten hat der CO2-Gehalt in der Erdatmosphäre unter anderem durch den Straßenverkehr zugenommen.
Teil a
Für jeden PKW mit Benzinantrieb wird angenommen, dass pro Liter verbrauchten Benzins 2,32 kg CO2 ausgestoßen werden. PKW A fahrt eine Strecke von s km mit einem durchschnittlichen Benzinverbrauch von 7,9 Litern pro 100 km. Um dessen CO2-Ausstoß auszugleichen, sollen b Bäume gepflanzt werden. Dabei nimmt man an, dass jeder dieser Bäume in seiner gesamten Lebenszeit 500 kg CO2 aufnimmt.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie unter Verwendung von s eine Formel zur Berechnung der Anzahl b der zu pflanzenden Bäume auf.
b =
[0 / 1 P.]
PKW B legt eine Strecke von 15 000 km zurück. Um dessen CO2-Ausstoß auszugleichen, werden 5 Bäume gepflanzt.
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den durchschnittlichen Benzinverbrauch (in Litern pro 100 km) von PKW B auf dieser Strecke.
[0 / 1 P.]
Aufgabe 3026
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-2-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
CO2 und Klimaschutz
In den letzten Jahrzehnten hat der CO2-Gehalt in der Erdatmosphäre unter anderem durch den Straßenverkehr zugenommen.
Teil b
Neben CO2 verstärken auch andere Gase die Klimaerwärmung. Die Emission von diesen Gasen wird in sogenannte CO2-Äquivalente umgerechnet. Die nachstehende Tabelle gibt für einige Staaten der EU Auskunft über die jeweilige Einwohnerzahl (in Millionen) im Jahr 2015 und die zugehörigen CO2-Äquivalente (in Tonnen pro Person).
Einwohnerzahl in Mill. | CO2-Äquivalente in t pro Person | |
Belgien | 11,2 | 11,9 |
Frankreich | 66,4 | 6,8 |
Italien | 60,8 | 7,0 |
Luxemburg | 0,6 | 18,5 |
Niederlande | 16,9 | 12,3 |
Datenquellen: https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Popul… [24.07.2020],
https://de.wikipedia.org/wiki/Liste_der_Lander_nach_Treibhausgas-Emissi…
[24.07.2020].
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die durchschnittlichen CO2-Äquivalente e (in Tonnen pro Person) für den gesamten in der obigen Tabelle angeführten Teil der EU.
e = Tonnen pro Person
[0 / 1 P.]
Lukas sind nur die in der obigen Tabelle angeführten Werte der CO2-Äquivalente der einzelnen Staaten bekannt, nicht aber die jeweils zugehörige Einwohnerzahl. Er berechnet das arithmetische Mittel der CO2-Äquivalente zu:
\(\overline x = 11,3\)
2. Teilaufgabe - Bearbeitungszeit 05:40
Erklären Sie ohne Verwendung des berechneten Wertes von e, warum x größer als e sein muss.
[0 / 1 P.]
Aufgabe 3027
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-2-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zeit-Geschwindigkeit-Diagramm
Die Geschwindigkeiten von 2 PKWs (PKW A und PKW B) werden als Funktionen in Abhängigkeit von der Zeit modelliert. Im unten stehenden Zeit-Geschwindigkeit-Diagramm sind die zugehörigen Graphen dargestellt. Die Zeit t wird in Sekunden angegeben, die Geschwindigkeiten werden in m/s angegeben.
- PKW A und PKW B starten zum Zeitpunkt t = 0 aus dem Stillstand. Sie haben beide zum Zeitpunkt t = 10 eine Geschwindigkeit von 12 m/s.
- PKW A bewegt sich für \(t \in \left[ {0;6} \right]\) mit der Geschwindigkeit v1(t) und für \(t \in \left[ {6;10} \right]\) mit der konstanten Geschwindigkeit v2(t).
- PKW B bewegt sich für \(t \in \left[ {0;10} \right]\) mit der Geschwindigkeit \({v_3} = 0,12 \cdot {t^2}\)
Illustration fehlt
Teil a
- Im Zeitintervall [0; 6] legt PKW A eine Strecke von 36 m zurück.
- Im Zeitintervall [0; t1] mit 6 ≤ t1 ≤ 10 legt PKW A eine Strecke mit der Länge d zurück (d in m).
1. Teilaufgabe - Bearbeitungszeit 05:40
Geben Sie d in Abhängigkeit von t1 an.
d =
[0 / 1 P.]
Im Zeitintervall [0; 10] legt PKW A eine längere Strecke als PKW B zurück.
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie, um wie viele Meter diese Strecke länger ist.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 3028
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-2-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zeit-Geschwindigkeit-Diagramm
Die Geschwindigkeiten von 2 PKWs (PKW A und PKW B) werden als Funktionen in Abhängigkeit von der Zeit modelliert. I.m unten stehenden Zeit-Geschwindigkeit-Diagramm sind die zugehörigen Graphen dargestell. Die Zeit t wird in Sekunden angegeben, die Geschwindigkeiten werden in m/s angegeben.
Teil b
Für PKW A gilt:
- Zum Zeitpunkt t = 6 betragt die Geschwindigkeit 12 m/s.
- Zum Zeitpunkt t = 0 betragt die Beschleunigung 0 m/s2.
- Zum Zeitpunkt t = 3 hat die Beschleunigung ihren maximalen Wert.
Für die Funktion \({v_1}\left[ {0;6} \right] \to {\Bbb R}\) gilt:
\({{\text{v}}_1}\left( t \right) = p \cdot {t^3} + q \cdot {t^2} + r \cdot t{\text{ f\"u r alle t}} \in \left[ {0;6} \right]{\text{ p}}{\text{,q}}{\text{,r }} \in {\Bbb R}\)
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie ein Gleichungssystem mit 3 Gleichungen auf, mit dem die Koeffizienten p, q und r berechnet werden können.
[0 / ½ / 1 P.]
Aufgabe 3029
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-2-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zeit-Geschwindigkeit-Diagramm
Die Geschwindigkeiten von 2 PKWs (PKW A und PKW B) werden als Funktionen in Abhängigkeit von der Zeit modelliert. Die Zeit t wird in Sekunden angegeben, die Geschwindigkeiten werden in m/s angegeben.
Teil c
Die Beschleunigung von PKW B wird im Zeitintervall [0; 10] durch die Funktion a3 in Abhängigkeit von der Zeit t beschrieben (t in s, a3(t) in m/s2).
1. Teilaufgabe - Bearbeitungszeit 05:40
Zeichnen Sie im nachstehenden Koordinatensystem den Graphen der Beschleunigungsfunktion a3 ein.
[0 / 1 P.]
Aufgabe 3030
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-2-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Würfelspiel
Bei einem Würfelspiel werden verschiedene Würfel mit jeweils 6 Seitenflächen verwendet. Bei allen verwendeten Würfeln tritt bei jedem Wurf jede Seitenfläche mit der gleichen Wahrscheinlichkeit wie jede der anderen Seitenflächen auf. Die Ergebnisse verschiedener Würfe sind voneinander unabhängig. Es werden die 3 Würfeltypen A, B und C verwendet. In der nachstehenden Abbildung sind deren Seitenflächen dargestellt.
Illustration fehlt
Teil a
Ein Spieler würfelt 1-mal gleichzeitig mit einem Würfel vom Typ B und einem Würfel vom Typ C.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Wahrscheinlichkeit, dass die Summe der gewürfelten Augenzahlen 8 beträgt.
[0 / 1 P.]
Aufgabe 3031
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-2-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Würfelspiel
Bei einem Würfelspiel werden verschiedene Würfel mit jeweils 6 Seitenflächen verwendet. Bei allen verwendeten Würfeln tritt bei jedem Wurf jede Seitenfläche mit der gleichen Wahrscheinlichkeit wie jede der anderen Seitenflächen auf. Die Ergebnisse verschiedener Würfe sind voneinander unabhängig. Es werden die 3 Würfeltypen A, B und C verwendet. In der nachstehenden Abbildung sind deren Seitenflächen dargestellt.
Illustration fehlt
Teil b
Die Zufallsvariable XA bzw. XB bzw. XC gibt die Augenzahl beim Wurf eines Würfels vom Typ A bzw. B bzw. C an. Eine dieser drei Zufallsvariablen hat einen ganzzahligen Erwartungswert.
1. Teilaufgabe - Bearbeitungszeit 05:40
Geben Sie diesen ganzzahligen Erwartungswert an.
[0 / 1 P.]
Die beiden anderen Zufallsvariablen haben die gleiche Standardabweichung.
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie diese Standardabweichung. [0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 3032
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-2-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Würfelspiel
Bei einem Würfelspiel werden verschiedene Würfel mit jeweils 6 Seitenflächen verwendet. Bei allen verwendeten Würfeln tritt bei jedem Wurf jede Seitenfläche mit der gleichen Wahrscheinlichkeit wie jede der anderen Seitenflächen auf. Die Ergebnisse verschiedener Würfe sind voneinander unabhängig. Es werden die 3 Würfeltypen A, B und C verwendet. In der nachstehenden Abbildung sind deren Seitenflächen dargestellt.
Illustration fehlt
Teil c
Mit einem Würfel vom Typ C wird n-mal gewürfelt. Die Zufallsvariable Yn gibt an, bei wie vielen von diesen n Würfen mit einem Würfel vom Typ C eine ungerade Augenzahl auftritt (n ∈ ℕ). Mit \({\mu _n}\) wird der Erwartungswert und mit \({\sigma _n}\) die Standardabweichung von Yn bezeichnet.
1. Teilaufgabe - Bearbeitungszeit 05:40
Geben Sie \({\mu _n}\) und \({\sigma _n}\) in Abhängigkeit von n an.
[0 / ½ / 1 P.]