Headerbar Werbung für Region "nicht-DACH"
Österreichische AHS Matura - 2022.05.03 - 4 Typ II Beispiele - 120 Minuten Rechenzeit
Aufgabe 3052
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 03. Mai 2022 - Teil-2-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fahrradtour
Bettina macht eine 2-stündige Fahrradtour.
Teil a
Ihre Geschwindigkeit kann dabei näherungsweise durch die Funktion v beschrieben werden.
\(v\left( t \right) = - 0,08 \cdot {t^2} + 16{\text{ mit }}0 \leqslant t \leqslant 2\)
- t ... Zeit in h mit t = 0 für den Beginn der Fahrradtour
- v(t) ... Geschwindigkeit zum Zeitpunkt t in km/h
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Zeitdauer, die Bettina für die ersten 10 km dieser Fahrradtour benötigt.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Beschleunigung zum Zeitpunkt t = 1. Geben Sie auch die zugehörige Einheit an.
[0 / ½ / 1 P.]
Banner Werbung für Region CH
Versteh' ich nicht - Gibt's nicht!
Frage kostenlos per eMail unser Supportteam
Damit niemand mehr bei Mathe in's Schwimmen kommt

Aufgabe 3053
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 03. Mai 2022 - Teil-2-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fahrradtour
Bettina macht eine 2-stündige Fahrradtour.
Teil b
Der empfohlene Reifendruck eines Fahrradreifens sinkt mit zunehmender Breite des Reifens. Für einen empfohlenen Reifendruck von 2 bar bis 9 bar kann der empfohlene Reifendruck näherungsweise durch die Funktion p beschrieben werden.
\(p\left( x \right) = 19,1 \cdot {e^{ - 0,0376 \cdot x}}\)
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie das größtmögliche Intervall für die Breite des Reifens, für das sich ein empfohlener Reifendruck von 2 bar bis 9 bar ergibt.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie das Ergebnis der nachstehenden Berechnung unter Angabe der zugehörigen Einheiten im gegebenen Sachzusammenhang.
\(p\left( {30} \right) - p\left( {20} \right) \approx - 2,8\)
Aufgabe 3054
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 03. Mai 2022 - Teil-2-Aufgaben - 2. Aufgabe - Best-of-Wertung
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Biathlon
Biathlon ist eine Wintersportart, die Skilanglauf und Schießen kombiniert. Bei einem bestimmten Wettbewerb müssen drei Runden zu je 2 500 m absolviert werden. Dabei gilt:
- Nach der ersten und nach der zweiten absolvierten Runde findet jeweils ein Schießen statt. Bei jedem Schießen werden fünf Schüsse abgegeben.
- Für jeden Fehlschuss muss eine 150 m lange Strafrunde absolviert werden, wodurch es zu einem Zeitverlust kommt.
Quelle: https://www.sport1.de/wintersport/biathlon/2018/11/biathlon-im-ueberbli…
[15.04.2021].
Teil a
Lisa absolviert die drei Runden mit folgenden durchschnittlichen Geschwindigkeiten (v1, v2, v3 in m/s): v1 für die erste Runde; v2 für die zweite Runde; v3 für die dritte Runde
- Für das Schießen benötigt Lisa jeweils die Zeitdauer t* (t* in s).
- Nach der ersten absolvierten Runde macht sie beim Schießen keinen Fehler.
- Nach der zweiten absolvierten Runde macht sie beim Schießen genau 2 Fehler.
- Die 2 Strafrunden absolviert sie mit einer durchschnittlichen Geschwindigkeit von vS (vS in m/s).
Unter der Laufzeit b (b in s) versteht man diejenige Zeit, die Lisa insgesamt für die absolvierten Runden inklusive Strafrunden und für das Schießen benötigt.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe von v1, v2, v3, t* und vS eine Formel zur Berechnung von b auf.
[0 / 1 P.]
Aufgabe 3055
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 03. Mai 2022 - Teil-2-Aufgaben - 2. Aufgabe - Best-of-Wertung
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Biathlon
Biathlon ist eine Wintersportart, die Skilanglauf und Schießen kombiniert. Bei einem bestimmten Wettbewerb müssen drei Runden zu je 2 500 m absolviert werden.
Teil b
Die Geschwindigkeit von Hanna in der ersten Runde kann modellhaft durch die Funktion
v: [0; 440] → ℝ, t ↦ v(t) beschrieben werden (t in s, v(t) in m/s).
1. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie
\(\dfrac{1}{T} \cdot \int\limits_0^T {v\left( t \right)} \,\,dt{\text{ mit }}T \in \left( {0s;440s} \right)\)
im gegebenen Sachzusammenhang.
[0 / 1 P.]
Es gibt genau zwei Zeitpunkte
\({t_1},{t_2} \in \left( {0s;440s} \right){\text{ mit }}{t_1} < {t_2}\)
für die gilt:
\(\begin{gathered} v'\left( {{t_1}} \right) = 0{\text{ und }}v''\left( {{t_1}} \right) < 0 \hfill \\ v'\left( {{t_2}} \right) = 0{\text{ und }}v''\left( {{t_2}} \right) < 0 \hfill \\ \end{gathered} \)
- Satzteil 1.1: lokale Minimumstellen
- Satzteil 1.2: lokale Maximumstellen
- Satzteil 1.3: Wendestellen
- Satzteil 2.1: durchschnittlichen Geschwindigkeit
- Satzteil 2.2: Länge der zurückgelegten Strecke
- Satzteil 2.3: durchschnittlichen Beschleunigung
2. Teilaufgabe - Bearbeitungszeit 05:40
Ergänzen Sie die Textlücken im nachstehenden Satz durch Ankreuzen des jeweils zutreffenden Satzteils so, dass eine richtige Aussage entsteht.
Die Zeitpunkte t1 und t2 sind _____1_____ der Funktion v und der Wert von \(\dfrac{{v\left( {{t_2}} \right) - \left( {{t_1}} \right)}}{{{t_2} - {t_1}}}\) entspricht dabei der _____2_____ im Zeitintervall [t1; t2].
[0 / ½ / 1 P.]
Aufgabe 3056
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 03. Mai 2022 - Teil-2-Aufgaben - 2. Aufgabe - Best-of-Wertung
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Biathlon
Biathlon ist eine Wintersportart, die Skilanglauf und Schießen kombiniert. Bei einem bestimmten Wettbewerb müssen drei Runden zu je 2 500 m absolviert werden.
Teil c
Die Zufallsvariable X gibt die Anzahl der Treffer von Daria beim Schießen an und wird als binomialverteilt angenommen. Bei jedem der 5 Schüsse ist p die Trefferwahrscheinlichkeit.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie unter Verwendung von p eine Formel zur Berechnung der nachstehenden Wahrscheinlichkeit auf.
\(P\left( {X \geqslant 4} \right) = \)
[0 / 1 P.]
Banner Werbung für Region AT
Mathematik, Elektrotechnik und Physik
MINT Wissen auf maths2mind ohne Abo und ohne Kreditkarte
Nach der Prüfung genießt du deinen Erfolg

Aufgabe 3057
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 03. Mai 2022 - Teil-2-Aufgaben - 3. Aufgabe - Best-of-Wertung
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weltbevölkerung
In der nachstehenden Tabelle ist für bestimmte Kalenderjahre die Schätzung der Weltbevölkerung (jeweils zur Jahresmitte) angegeben.
Kalenderjahr | Weltbevölkerung in Milliarden |
1850 | 1,260 |
1900 | 1,650 |
1950 | 2,536 |
1960 | 4,030 |
1970 | 3,700 |
1990 | 5,327 |
2000 | 6,140 |
2010 | 6,975 |
2020 | 7,790 |
Datenquellen: https://de.statista.com/statistik/daten/studie/1694/umfrage/entwicklung…,
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/b…
[17.05.2020].
Teil a
Im Zeitraum von 1850 bis 1950 hat sich die Weltbevölkerung annähernd verdoppelt. Nehmen Sie für diesen Zeitraum an, dass die Weltbevölkerung jährlich um den gleichen Prozentsatz gewachsen ist.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie diesen Prozentsatz.
[0 / 1 P.]
Aufgabe 3058
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 03. Mai 2022 - Teil-2-Aufgaben - 3. Aufgabe - Best-of-Wertung
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weltbevölkerung
In der nachstehenden Tabelle ist für bestimmte Kalenderjahre die Schätzung der Weltbevölkerung (jeweils zur Jahresmitte) angegeben.
Kalenderjahr | Weltbevölkerung in Milliarden |
1970 | 3,700 |
1990 | 5,327 |
2000 | 6,140 |
2010 | 6,975 |
2020 | 7,790 |
Datenquellen: https://de.statista.com/statistik/daten/studie/1694/umfrage/entwicklung…,
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/b…
[17.05.2020].
Teil b
Ab 1970 kann die Entwicklung der Weltbevölkerung näherungsweise durch eine lineare Funktion f beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe der Werte für die Weltbevölkerung der Kalenderjahre 1970 und 2000 eine Funktionsgleichung von f in Abhängigkeit von der Zeit t auf (t in Jahren mit t = 0 für das Jahr 1970, f(t) in Milliarden).
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie, um wie viel Prozent der mithilfe von f ermittelte Wert für das Kalenderjahr 2020 vom in der obigen Tabelle angegebenen Wert abweicht. [0 / 1 P.]
Aufgabe 3059
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 03. Mai 2022 - Teil-2-Aufgaben - 3. Aufgabe - Best-of-Wertung
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weltbevölkerung
In der nachstehenden Tabelle ist für bestimmte Kalenderjahre die Schätzung der Weltbevölkerung (jeweils zur Jahresmitte) angegeben.
Kalenderjahr | Weltbevölkerung in Milliarden |
1970 | 3,700 |
1990 | 5,327 |
2000 | 6,140 |
2010 | 6,975 |
2020 | 7,790 |
Datenquellen: https://de.statista.com/statistik/daten/studie/1694/umfrage/entwicklung…,
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/b…
[17.05.2020].
Teil c
In einem anderen Modell wird die Entwicklung der Weltbevölkerung ab 1970 durch die Funktion g modelliert.
\(g\left( t \right) = 3,7 \cdot {e^{ - 0,0001 \cdot {t^2} + 0,02 \cdot t}}\)
- t ... Zeit ab 1970 in Jahren
- g(t) ... Weltbevölkerung zur Zeit t in Milliarden
Gemäß diesem Modell wird die Weltbevölkerung zunächst zunehmen und in weiterer Folge abnehmen.
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie mithilfe der Funktion g das Maximum der Weltbevölkerung, in dem dies gemäß dem Modell eintreten soll.
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie mithilfe der Funktion g das Kalenderjahr, in dem dies gemäß dem Modell eintreten soll.
[0 / ½ / 1 P.]
Aufgabe 3060
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 03. Mai 2022 - Teil-2-Aufgaben - 4. Aufgabe - Best-of-Wertung
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vitamin C
Vitamin C erfüllt viele wichtige Aufgaben im menschlichen Körper.
Teil a
Brokkoli enthält durchschnittlich 100 mg Vitamin C pro 100 g. Bei einem Gemüsegroßhändler wird eine Zufallsstichprobe von 50 Portionen frischem Brokkoli entnommen und für jede Portion der Vitamin-C-Gehalt pro 100 g gemessen.
Der Flächeninhalt eines Rechtecks im nachstehenden Histogramm entspricht der absoluten Häufigkeit der Portionen dieser Stichprobe im jeweiligen Bereich.
Abbildung fehlt
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie die Anzahl der Portionen in der Zufallsstichprobe, die 100 mg bis 120 mg Vitamin C pro 100 g aufweisen.
[0 / 1 P.]
Von der Zufallsstichprobe werden 3 Portionen ohne Zurücklegen entnommen.
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Wahrscheinlichkeit, dass höchstens 2 dieser Portionen 100 mg bis 120 mg Vitamin C pro 100 g aufweisen.
[0 / 1 P.]
Banner Werbung für Region "nicht-DACH"
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 3061
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 03. Mai 2022 - Teil-2-Aufgaben - 4. Aufgabe - Best-of-Wertung
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vitamin C
Vitamin C erfüllt viele wichtige Aufgaben im menschlichen Körper.
Teil b
Ein Getränkehersteller möchte Fruchtsaft so in Flaschen abfüllen, dass jede Flasche 100 mg Vitamin C enthält. Es stehen zur Verfügung:
- Birnensaft mit 20 mg Vitamin C pro 100 ml
- Orangensaft mit 35 mg Vitamin C pro 100 ml
- Mischungen aus diesen beiden Säften
Emine behauptet, dass der Vitamin-C-Gehalt von 100 mg bei Flaschen mit einem Fassungsvermögen von 250 ml nicht erreicht werden kann.
1. Teilaufgabe - Bearbeitungszeit 05:40
Begründen Sie, warum Emines Behauptung richtig ist.
[0 / 1 P.]
Die zur Verfügung stehenden Fruchtsäfte werden so gemischt, dass 350 ml Saft genau 100 mg Vitamin C enthalten.
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie, wie viele Milliliter Birnensaft mit wie vielen Millilitern Orangensaft dafür gemischt werden müssen.
[0 / 1 P