Ungleichungen
Hier findest du folgende Inhalte
Formeln
Ungleichung
Verbindet man 2 Terme mit einem der nachfolgend angeführten Ungleichheitszeichen, so erhält man eine Ungleichung, verbindet man sie hingegen mit „=“, so erhält man eine Gleichung. Beim Lösen von Ungleichungen sucht man also nach jenen Werten für die Variable mit denen die Ungleichung eine wahre Aussage wird.
Ungleichheitszeichen
Das Ungleichheitszeichen ist ein Vergleichszeichen, welche die Ungleichheit der Terme auf den beiden Seiten einer Ungleichung anzeigt.
\({{\text{a < b}}}\) | a kleiner als b |
\({{\text{a}} \leqslant b}\) | a kleiner oder gleich b |
\({{\text{a > b}}}\) | a größer b |
\({{\text{a}} \geqslant {\text{b}}}\) | a größer oder gleich b |
\({a \ll b}\) | a viel kleiner als b |
\({a \gg b}\) | a viel grüßer als b |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Lineare Ungleichung mit einer Variablen
Bei einer linearen Ungleichung mit einer Variablen enthält die Ungleichung eine einzige Variable und diese wiederum lediglich zur 1. Potenz. Die Lösungsmenge, also all jene x, die die Ungleichung erfüllen, kann man am Zahlenstrahl durch Intervalle visualisieren.
\(ax + b < cx + d\)
Normalform einer linearen Ungleichung mit einer Variablen
Bei der Normalform einer linearen Ungleichung kommt die Variable x nur zur 1. Potenz vor und rechts vom Ungleichheitszeichen steht eine Null. Dazu ist es eventuell erforderlich die Ungleichung durch Äquivalenzumformungen entsprechend umzuformen
Beispiel
\(\eqalign{ & ax + b < cx + d \cr & \left( {a - c} \right) \cdot x + \left( {b - d} \right) < 0 \cr} \)
Zum Lösen der Ungleichung macht man die Variable explizit, indem man allfällige Klammern auflöst, die Therme zusammenfasst und Äquivalenzumformungen so durchführt, dass die Variable und allfällige Konstanten alleine auf einer Seite der Ungleichung stehen. Nicht vergessen: Bei Division oder Multiplikation mit einer negativen Zahl, muss man das Ungleichheitszeichen umdrehen!
\(\eqalign{ & ax + b < 0{\text{ }}...{\text{ mit a}}{\text{,b }} \in {\text{ }}{\Bbb R}{\text{ und a}} \ne {\text{0}} \cr & ax + b > 0{\text{ }}...{\text{ mit a}}{\text{,b }} \in {\text{ }}{\Bbb R}{\text{ und a}} \ne {\text{0}} \cr}\)
Äquivalenzumformungen bei Ungleichungen
Ebenso wie Gleichungen löst man auch Ungleichungen durch Äquivalenzumformungen. Unter einer Äquivalenzumformung einer Ungleichung versteht man eine Umformung, die den Wahrheitswert der Ungleichung unverändert lässt. Bei Ungleichungen unterscheidet man zwischen Äquivalenzumformung mit bzw. ohne Umkehrung des Ungleichheitszeichens.
Ungleichungen kann man von links nach rechts und von rechts nach links lesen:
\({T_1} > {T_2} \Leftrightarrow {T_2} < {T_1}\)
"Wenn Term 1 größer als Term 2 ist, dann ist Term 2 kleiner als Term 1".
Zwei Ungleichungen mit gleichem Ungleichheitszeichen darf man zusammenfassen
\({T_1} \geqslant {T_2}\,\,\,\,\,{T_3} \geqslant {T_4} \Rightarrow {T_1} + {T_3} \geqslant {T_2} + {T_4}\)
"Wenn T1 größer gleich T2 und wenn T3 größer gleich T4 ist, dann ist auch die Summe aus T1 und T3 größer oder gleich T2 und T4".
Äquivalenzumformung ohne Umkehrung des Ungleichheitszeichens
Eine Äquivalenzumformung ändert die Lösung einer Ungleichung nicht.
Addition oder Subtraktion von einer Konstanten oder einem Term auf beiden Seiten der Ungleichung:
\(\eqalign{ & {T_1} < {T_2} \Leftrightarrow {T_1} \pm c < {T_2} \pm c \cr & {T_1} < {T_2} \Leftrightarrow {T_1} \pm {T_3} < {T_2} \pm {T_3} \cr} \)
Multiplikation bzw. Division mit einer positiven Zahl oder einem positiven Term erfordern keine Umkehrung des Ungleichheitszeichens:
\(\eqalign{ & {T_1} < {T_2} \Leftrightarrow {T_1} \cdot c < {T_2} \cdot c \cr & {T_1} < {T_2} \Leftrightarrow {T_1} \cdot {T_3} < {T_2} \cdot {T_3} \cr} \)
bzw.
\(\eqalign{ & {T_1} < {T_2} \Leftrightarrow {T_1}:c < {T_2}:c \cr & {T_1} < {T_2} \Leftrightarrow {T_1}:{T_3} < {T_2}:{T_3} \cr} \)
Äquivalenzumformung mit Umkehrung des Ungleichheitszeichens
Das Ungleichheitszeichen muss umgedreht werden, wenn man die Reihenfolge der Terme vertauscht oder wenn man mit einer negativen Zahl multipliziert oder dividiert.
\(\eqalign{ & {T_1} < {T_2} \Leftrightarrow {T_2} > {T_1} \cr & \cr & {T_1} < {T_2} \Leftrightarrow {T_1} \cdot c > {T_2} \cdot c{\text{ }}...{\text{ wenn c eine negative Zahl ist}} \cr & \cr & {T_1} < {T_2} \Leftrightarrow {T_1}:c > {T_2}:c{\text{ }}...{\text{ wenn c eine negative Zahl ist}} \cr}\)
Beispiel:
Gegeben sei folgende Ungleichung
\(- 4 \cdot x + 6 < 14\)
Wir subtrahieren 6 von beiden Seiten der Ungleichung → keine Umkehrung vom Ungleichheitszeichen
\(\eqalign{ & - 4 \cdot x + 6 - 6 < 14 - 6 \cr & - 4 \cdot x < 8 \cr} \)
Wir dividieren beide Seiten der Ungleichung durch -4 → Umkehrung vom Ungleichheitszeichen erforderlich!
\(\eqalign{ & - 4 \cdot x < 8\,\,\,\,\,\left| {:\left( { - 4} \right)} \right. \cr & x > \frac{8}{{ - 4}} \cr & x > - 2 \cr} \)
Intervalle
Intervalle dienen dazu Zahlenbereiche noch oben und nach unten abzugrenzen. Eine Menge reeller Zahlen heißt Intervall, wenn diese Zahlen durch eine Strecke auf der Zahlengerade darstellbar sind.
Offenes Intervall
Bei einem offenen Intervall, bzw. einem Intervall mit offenen Grenzen, sind beide Grenzen selbst nicht mit eingeschlossen.. Das offene Intervall umfasst alle Zahlen, die zwischen dem unteren „u“ und dem oberen „o“ Grenzwert liegen, jedoch sind die beiden Grenzwerte „u“ bzw. „o“ selbst nicht Teil vom offenen Intervall.
\(\eqalign{ & u < x < o \cr & \left] {u;o} \right[ = \left\{ {x \in {\Bbb R}\left| {u < x < o} \right.} \right\} \cr}\)
Abgeschlossenes Intervall
Bei einem abgeschlossenen Intervall,bzw. einem Intervall mit geschlossenen Grenzen, sind beide Grenzen mit eingeschlossen. Das abgeschlossene Intervall umfasst alle Zahlen, die zwischen dem unteren „u“ und dem oberen „o“ Grenzwert liegen, inklusive der beiden Grenzwerte „u“ bzw. „o“.
\(\eqalign{ & u \leqslant x \leqslant o \cr & \left[ {u;o} \right] = \left\{ {x \in {\Bbb R}\left| {u \leqslant x \leqslant o} \right.} \right\} \cr}\)
Halboffenes Intervall
Das halboffene Intervall hat eine offene und eine geschlossene Grenze. Das halboffene Intervall umfasst alle Zahlen, die zwischen dem unteren „u“ und dem oberen „o“ Grenzwert liegen, jedoch ist eine der beiden Grenzen „u“ bzw. „o“ selbst mit eingeschlossen, während die jeweils andere Grenze nicht eingeschlossen ist.
\(\eqalign{ & u \leqslant x < o\,\,\,\,\,\,\,\,\,\,\left[ {u;o} \right[ = \left\{ {x \in {\Bbb R}\left| {u \leqslant x < o} \right.} \right\} \cr & u < x \leqslant o\,\,\,\,\,\,\,\,\,\,\left] {u;o} \right] = \left\{ {x \in {\Bbb R}\left| {u < x \leqslant o} \right.} \right\} \cr} \)
Unendliches Intervall
Das unendliche Intervall hat nur eine untere oder eine obere Grenze, die entweder zum Intervall gehört oder nicht. Aus der Zahlengerade wird so ein Zahlenstrahl.
\(\eqalign{ & u \leqslant x \cr & \left[ {u;\infty } \right] = \left\{ {x \in {\Bbb R}\left| {u \leqslant x} \right.} \right\} \cr} \)
Systeme linearer Ungleichungen mit einer Variablen
Von einem System linearer Ungleichungen spricht man, wenn man die gemeinsame Lösung von 2 oder mehreren linearen Ungleichungen finden soll.
\(\eqalign{ & ax + b < 0 \cr & cx + d > 0 \cr}\)
Zuerst löst man die Ungleichungen getrennt voneinander.
Konjunktive Systeme linearer Ungleichungen
Bei konjunktiven Systemen werden die einzelnen Lösungen durch ein „und“ bzw. „\(\wedge\)“ zu einer Gesamtlösung verknüpft.
\({L_{Ges}} = {L_1} \wedge {L_2}\)
Disjunktive Systeme linearer Ungleichungen
Bei disjunktiven Systemen werden die einzelnen Lösungen durch ein „oder“ bzw. „\(\vee\)“ zu einer Gesamtlösung verknüpft.
\({L_{Ges}} = {L_1} \vee {L_2}\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Lineare Ungleichung mit zwei Variablen
Enthalten die beiden Terme einer Ungleichung die beiden Variablen x und y und kommen diese lediglich zur 1. Potenz vor, so spricht man von einer linearen Ungleichung mit 2 Variablen. Eine lineare Ungleichung mit zwei Variablen besitzt unendlich viele Lösungspaare, die geometrisch interpretiert, die Punkte einer offenen oder geschlossenen Halbebene sind. Die Gerade kx+d<y bezeichnet man als Randgerade der Lösungsmenge und die Lösungsmenge selbst ist die dem Ungleichheitszeichen entsprechende Halbebene in der gaußschen Ebene.
\(kx + d < y\)
Ungleichung als Randgerade einer Halbebene
Soll eine Ungleichung grafisch als Randgerade einer Halbebene dargestellt werden, so muss man die Ungleichung so umformen, dass wir die zugehörige Randgerade in der Form \(y = k \cdot x + d\) erhalten.
Operator „ < “ oder „ > “: Randgerade ist strichliert: \(g \notin L\)
Die Punkte auf der Randgeraden sind nicht Teil der Lösung. Man spricht von einer offenen Halbebene
Operator „ \( \le\) “ oder „ \( \ge\) “ Randgerade ist durchgezogen: \(g \in L\)
Die Punkte auf der Randgeraden sind Teil der Lösung. Man spricht von einer abgeschlossenen Halbebene
Man wählt einen beliebigen Punkt nahe aber nicht auf der Randgerade und prüft ob er die Ungleichung erfüllt und daher in der entsprechenden Halbebene (farbig markiert) liegt.
Achtung: Bei Multiplikation oder Division von Ungleichungen mit einer negativen Zahl muss das Ungleichheitszeichen umgedreht werden!
Beispiel:
\(3y - 2x < 6\)
Systeme linearer Ungleichungen mit zwei Variablen
Von einem System linearer Ungleichungen mit 2 Variablen spricht man, wenn man die gemeinsame Lösung von 2 oder mehr Ungleichungen mit 2 Variablen finden soll. Zuerst ermittelt man die Randgeraden und die zugehörige Halbebene der jeweiligen Ungleichungen getrennt voneinander...
\(\eqalign{ & kx + d < y \cr & ex + f > y \cr}\)
... und bildet anschließend die Durchschnittsmenge.
\({L_{Ges}} = {L_1} \cap {L_2}\)
Beispiel:
Ein System mit 3 linearen Ungleichungen:
Quadratische Ungleichung mit einer Variablen
Enthält die Ungleichung die Variable x zur 2. Potenz, so spricht man von einer quadratischen Ungleichung.
\(a{x^2} + bx + c < 0\)
Man löst zunächst die zugehörige quadratische Gleichung
\(a{x^2} + bx + c = 0\)
mit der abc Formel.
- Wenn die Gleichung keine Lösung hat, dann ist die Ungleichung entweder für kein oder für alle x erfüllt
- Wenn die Gleichung eine oder zwei Lösung hat, dann ist die Lösung der Ungleichung die Vereinigungsmenge der Lösungsintervalle
Anschließen faktorisiert man das Polynom wie folgt
\(a{x^2} + bx + c = (x - {x_1}) \cdot \left( {x - {x_2}} \right)\)
somit wird aus \(a{x^2} + bx + c < 0\) nunmehr \((x - {x_1}) \cdot \left( {x - {x_2}} \right) < 0\)
Die beiden Faktoren (x-x1) bzw. (x-x2) ergeben nur dann gemäß Angabe ein negatives Ergebnis (<0), wenn sie entgegengesetzte Vorzeichen haben. Es muss daher gelten:
\(\eqalign{ & \left( {x - {x_1}} \right) < 0{\text{ und }}\left( {x - {x_2}} \right) > 0 \cr & {\text{oder}} \cr & \left( {x - {x_1}} \right) > 0{\text{ und }}\left( {x - {x_2}} \right) < 0 \cr}\)
Nunmehr kann man die Lösung als offenes Intervall auf dem Zahlenstrahl darstellen.
Illustration der Lösung einer quadratischen Ungleichung am Zahlenstrahl