BMBWF - AN 2.1 .. AN 2.1: Regeln für das Differenzieren
Aufgabe 1007
AHS - 1_007 & Lehrstoff: AN 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ableitung einer Polynomfunktion
Gegeben ist eine Polynomfunktion f mit \(f\left( x \right) = 7{x^3} - 5{x^2} + 2x - 3\)
Aufgabenstellung:
Bilden Sie die 1. und die 2. Ableitung der Funktion f!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1010
AHS - 1_010 & Lehrstoff: AN 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ableitung von Sinus- und Kosinus-Funktion
Gegeben sind vier Funktionen und sechs Ableitungsfunktionen.
A | \(f'\left( x \right) = - \cos \left( x \right) + 2 \cdot \sin \left( x \right)\) |
B | \(f'\left( x \right) = 2 \cdot cos\left( x \right) + \sin \left( x \right)\) |
C | \(f'\left( x \right) = 2 \cdot \cos \left( x \right) - \sin \left( x \right)\) |
D | \(f'\left( x \right) = - \cos \left( x \right) - 2 \cdot \sin \left( x \right)\) |
E | \(f'\left( x \right) = \cos \left( x \right) - 2 \cdot \sin \left( x \right)\) |
F | \(f'\left( x \right) = 2 \cdot \sin \left( x \right) + \cos \left( x \right)\) |
Aufgabenstellung:
Ordnen Sie den Funktionen f die richtige Ableitungsfunktion f' (aus A bis F) zu!
Deine Antwort | |
I: \(f\left( x \right) = 2 \cdot cos\left( x \right) - \sin \left( x \right)\) | |
II: \(f\left( x \right) = \cos \left( x \right) + 2 \cdot \sin \left( x \right)\) | |
III: \(f\left( x \right) = - 2 \cdot \cos \left( x \right) - \sin \left( x \right)\) | |
IV: \(f\left( x \right) = - \cos \left( x \right) + 2 \cdot \sin \left( x \right)\) |
Aufgabe 1163
AHS - 1_163 & Lehrstoff: AN 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ableitungsregel
Für welche der folgenden Funktionen gilt der Zusammenhang \(f'\left( x \right) = k \cdot f\left( x \right){\text{ mit }}k \in {{\Bbb R}^ + }\)
- Aussage 1: \(f\left( x \right) = k \cdot x\)
- Aussage 2: \(f\left( x \right) = {x^{2 \cdot k}}\)
- Aussage 3: \(f\left( x \right) = k \cdot \sin \left( x \right)\)
- Aussage 4: \(f\left( x \right) = {e^{k \cdot x}}\)
- Aussage 5: \(f\left( x \right) = \dfrac{k}{x}\)
- Aussage 6: \(f\left( x \right) = k \cdot \sqrt x\)
Aufgabenstellung:
Kreuzen Sie die zutreffende Funktionsgleichung an!
Aufgabe 1177
AHS - 1_177 & Lehrstoff: AN 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Erste Ableitung einer Funktion
Gegeben ist die Funktion f mit \(f\left( a \right) = \dfrac{{{a^2} \cdot {b^3}}}{c}\) mit \(b,\,\,c \in {\Bbb R}\backslash \left\{ 0 \right\}\) .
- Aussage 1: \(\dfrac{{2 \cdot a \cdot {b^3} \cdot c - {a^2} \cdot {b^3}}}{{{c^2}}}\)
- Aussage 2: \(\dfrac{{2 \cdot a \cdot {b^3} + 3 \cdot {a^2} \cdot {b^2}}}{{{c^2}}}\)
- Aussage 3: \(\dfrac{{2 \cdot a \cdot {b^3}}}{c}\)
- Aussage 4: \(2 \cdot a\)
- Aussage 5: \(\dfrac{{2 \cdot a \cdot {b^3}}}{{{c^2}}}\)
- Aussage 6: \(2 \cdot {a^3}\)
Aufgabenstellung:
Kreuzen Sie denjenigen Term an, der die erste Ableitung f‘ der Funktion f angibt!
Aufgabe 1178
AHS - 1_178 & Lehrstoff: AN 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ableitung von Funktionen
Die Ableitungsfunktion einer Funktion kann mithilfe einfacher Regeln des Differenzierens ermittelt werden.
A | \(f'\left( x \right) = - 4x + 2\) |
B | \(f'\left( x \right) = \dfrac{1}{{\sqrt {2x} }}\) |
C | \(f'\left( x \right) = \dfrac{2}{{\sqrt {2x} }}\) |
D | \(f'\left( x \right) = - \dfrac{2}{{{x^4}}}\) |
E | \(f'\left( x \right) = - \dfrac{2}{{{x^3}}}\) |
F | \(f'\left( x \right) = - \dfrac{2}{{{x^2}}}\) |
Aufgabenstellung:
Ordnen Sie den nachfolgend gegebenen Funktionen f1, ... f4 jeweils die entsprechende Ableitungsfunktion (aus A bis F) zu!
Deine Antwort | |
\({f_1}\left( x \right) = \dfrac{2}{x}\) | |
\({f_2}\left( x \right) = - 2{x^2} + 2x - 2\) | |
\({f_3}\left( x \right) = \dfrac{1}{{{x^2}}}\) | |
\({f_4}\left( x \right) = \sqrt {2x} \) |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1179
AHS - 1_170 & Lehrstoff: AN 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ableitungsfunktion bestimmen
Gegeben ist die Funktion f mit \(f\left( y \right) = \dfrac{{{x^2}y - x{y^2}}}{2}{\text{ mit }}x \in {\Bbb R}\) .
Aufgabenstellung:
Bestimmen Sie den Funktionsterm der Ableitungsfunktion f‘!