Headerbar Werbung für Region "nicht-DACH"
BMBWF - AN 2.1 .. AN 2.1: Regeln für das Differenzieren
Aufgabe 1007
AHS - 1_007 & Lehrstoff: AN 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ableitung einer Polynomfunktion
Gegeben ist eine Polynomfunktion f mit \(f\left( x \right) = 7{x^3} - 5{x^2} + 2x - 3\)
Aufgabenstellung:
Bilden Sie die 1. und die 2. Ableitung der Funktion f!
Banner Werbung für Region CH
Versteh' ich nicht - Gibt's nicht!
Frage kostenlos per eMail unser Supportteam
Damit niemand mehr bei Mathe in's Schwimmen kommt

Aufgabe 1010
AHS - 1_010 & Lehrstoff: AN 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ableitung von Sinus- und Kosinus-Funktion
Gegeben sind vier Funktionen und sechs Ableitungsfunktionen.
A | \(f'\left( x \right) = - \cos \left( x \right) + 2 \cdot \sin \left( x \right)\) |
B | \(f'\left( x \right) = 2 \cdot cos\left( x \right) + \sin \left( x \right)\) |
C | \(f'\left( x \right) = 2 \cdot \cos \left( x \right) - \sin \left( x \right)\) |
D | \(f'\left( x \right) = - \cos \left( x \right) - 2 \cdot \sin \left( x \right)\) |
E | \(f'\left( x \right) = \cos \left( x \right) - 2 \cdot \sin \left( x \right)\) |
F | \(f'\left( x \right) = 2 \cdot \sin \left( x \right) + \cos \left( x \right)\) |
Aufgabenstellung:
Ordnen Sie den Funktionen f die richtige Ableitungsfunktion f' (aus A bis F) zu!
Deine Antwort | |
I: \(f\left( x \right) = 2 \cdot cos\left( x \right) - \sin \left( x \right)\) | |
II: \(f\left( x \right) = \cos \left( x \right) + 2 \cdot \sin \left( x \right)\) | |
III: \(f\left( x \right) = - 2 \cdot \cos \left( x \right) - \sin \left( x \right)\) | |
IV: \(f\left( x \right) = - \cos \left( x \right) + 2 \cdot \sin \left( x \right)\) |
Aufgabe 1163
AHS - 1_163 & Lehrstoff: AN 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ableitungsregel
Für welche der folgenden Funktionen gilt der Zusammenhang \(f'\left( x \right) = k \cdot f\left( x \right){\text{ mit }}k \in {{\Bbb R}^ + }\)
- Aussage 1: \(f\left( x \right) = k \cdot x\)
- Aussage 2: \(f\left( x \right) = {x^{2 \cdot k}}\)
- Aussage 3: \(f\left( x \right) = k \cdot \sin \left( x \right)\)
- Aussage 4: \(f\left( x \right) = {e^{k \cdot x}}\)
- Aussage 5: \(f\left( x \right) = \dfrac{k}{x}\)
- Aussage 6: \(f\left( x \right) = k \cdot \sqrt x\)
Aufgabenstellung:
Kreuzen Sie die zutreffende Funktionsgleichung an!
Aufgabe 1177
AHS - 1_177 & Lehrstoff: AN 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Erste Ableitung einer Funktion
Gegeben ist die Funktion f mit \(f\left( a \right) = \dfrac{{{a^2} \cdot {b^3}}}{c}\) mit \(b,\,\,c \in {\Bbb R}\backslash \left\{ 0 \right\}\) .
- Aussage 1: \(\dfrac{{2 \cdot a \cdot {b^3} \cdot c - {a^2} \cdot {b^3}}}{{{c^2}}}\)
- Aussage 2: \(\dfrac{{2 \cdot a \cdot {b^3} + 3 \cdot {a^2} \cdot {b^2}}}{{{c^2}}}\)
- Aussage 3: \(\dfrac{{2 \cdot a \cdot {b^3}}}{c}\)
- Aussage 4: \(2 \cdot a\)
- Aussage 5: \(\dfrac{{2 \cdot a \cdot {b^3}}}{{{c^2}}}\)
- Aussage 6: \(2 \cdot {a^3}\)
Aufgabenstellung:
Kreuzen Sie denjenigen Term an, der die erste Ableitung f‘ der Funktion f angibt!
Aufgabe 1178
AHS - 1_178 & Lehrstoff: AN 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ableitung von Funktionen
Die Ableitungsfunktion einer Funktion kann mithilfe einfacher Regeln des Differenzierens ermittelt werden.
A | \(f'\left( x \right) = - 4x + 2\) |
B | \(f'\left( x \right) = \dfrac{1}{{\sqrt {2x} }}\) |
C | \(f'\left( x \right) = \dfrac{2}{{\sqrt {2x} }}\) |
D | \(f'\left( x \right) = - \dfrac{2}{{{x^4}}}\) |
E | \(f'\left( x \right) = - \dfrac{2}{{{x^3}}}\) |
F | \(f'\left( x \right) = - \dfrac{2}{{{x^2}}}\) |
Aufgabenstellung:
Ordnen Sie den nachfolgend gegebenen Funktionen f1, ... f4 jeweils die entsprechende Ableitungsfunktion (aus A bis F) zu!
Deine Antwort | |
\({f_1}\left( x \right) = \dfrac{2}{x}\) | |
\({f_2}\left( x \right) = - 2{x^2} + 2x - 2\) | |
\({f_3}\left( x \right) = \dfrac{1}{{{x^2}}}\) | |
\({f_4}\left( x \right) = \sqrt {2x} \) |
Banner Werbung für Region AT
maths2mind
Kreditkarte? - Braucht man nicht!
Kostenpflichtige Pakete? Gibt es nicht!
Nach der Prüfung genießt du mit dem gesparten Geld deinen Erfolg

Aufgabe 1179
AHS - 1_170 & Lehrstoff: AN 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ableitungsfunktion bestimmen
Gegeben ist die Funktion f mit \(f\left( y \right) = \dfrac{{{x^2}y - x{y^2}}}{2}{\text{ mit }}x \in {\Bbb R}\) .
Aufgabenstellung:
Bestimmen Sie den Funktionsterm der Ableitungsfunktion f‘!