Österreichische AHS Matura - 2018.09.20 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1638
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 1. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zahlenmengen
Nachstehend sind Aussagen über Zahlen aus den Mengen \({\Bbb Z},{\Bbb Q},{\Bbb R},{\Bbb C}\) angeführt.
- Aussage 1: Irrationale Zahlen lassen sich in der Form \(\dfrac{a}{b}\) mit a, b ∈ ℤ und b ≠ 0 darstellen
- Aussage 2: Jede rationale Zahl kann in endlicher oder periodischer Dezimalschreibweise geschrieben werden.
- Aussage 3: Jede Bruchzahl ist eine komplexe Zahl.
- Aussage 4: Die Menge der rationalen Zahlen besteht ausschließlich aus positiven Bruchzahlen.
- Aussage 5: Jede reelle Zahl ist auch eine rationale Zahl.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die beiden zutreffenden Aussagen an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1639
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lösungsmenge einer quadratischen Gleichung
Gegeben ist eine quadratische Gleichung der Form \({x^2} + a \cdot x = 0\) in x mit \(a \in {\Bbb R}\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Bestimmen Sie denjenigen Wert für a, für den die gegebene Gleichung die Lösungsmenge \(L = \left\{ {0;\dfrac{6}{7}} \right\}\) hat.
Aufgabe 1640
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Erdgasanbieter
Ein Haushalt möchte seinen Erdgaslieferanten wechseln und schwankt noch bei der Wahl zwischen dem Anbieter A und dem Anbieter B.
Der Energiegehalt des verbrauchten Erdgases wird in Kilowattstunden (kWh) gemessen.
- Anbieter A verrechnet jährlich eine fixe Gebühr von 340 Euro und 2,9 Cent pro kWh.
- Anbieter B verrechnet jährlich eine fixe Gebühr von 400 Euro und 2,5 Cent pro kWh.
Die Ungleichung \(0,025 \cdot x + 400 < 0,029 \cdot x + 340\) dient dem Vergleich der zu erwartenden Kosten bei den beiden Anbietern.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Lösen Sie die oben angeführte Ungleichung und interpretieren Sie das Ergebnis im gegebenen Kontext!
Aufgabe 1641
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Verkaufszahlen
Ein Sportfachgeschäft bietet n verschiedene Sportartikel an. Die n Sportartikel sind in einer Datenbank nach ihrer Artikelnummer geordnet, sodass die Liste mit den entsprechenden Stückzahlen als Vektor (mit n Komponenten) aufgefasst werden kann.
Die Vektoren B, C und P (mit \(B,C,P \in {{\Bbb R}^n}\)) haben die folgende Bedeutung:
- Vektor B: Die Komponente \({b_i} \in {\Bbb N}{\text{ mit 1}} \leqslant {\text{i}} \leqslant {\text{n}}\) gibt den Lagerbestand des i-ten Artikels am Montagmorgen einer bestimmten Woche an.
- Vektor C: Die Komponente \({c_i} \in {\Bbb N}{\text{ mit 1}} \leqslant {\text{i}} \leqslant {\text{n}}\) gibt den Lagerbestand des i-ten Artikels am Samstagabend einer bestimmten Woche an.
- Vektor P: Die Komponente \({p_i} \in {\Bbb N}{\text{ mit 1}} \leqslant {\text{i}} \leqslant {\text{n}}\) gibt den Stückpreis in Euro des i-ten Artikels in dieser Woche an.
Das Fachgeschäft ist in der betrachteten Woche von Montag bis Samstag geöffnet und im Laufe dieser Woche werden weder Sportartikel nachgeliefert noch Stückpreise verändert.
Am Ende der Woche werden Daten für die betrachtete Woche (Montag bis Samstag) ausgewertet, wobei die erforderlichen Berechnungen mithilfe von Termen angeschrieben werden können.
- Aussage 1: durchschnittliche Verkaufszahlen (pro Sportartikel) pro Tag in der betrachteten Woche
- Aussage 2: Gesamteinnahmen durch den Verkauf von Sportartikeln in der betrachteten Woche
- Aussage 3: Verkaufszahlen (pro Sportartikel) in der betrachteten Woche
- Aussage 4: Verkaufswert des Lagerbestands an Sportartikeln am Ende der betrachteten Woche
- Term A: \(6 \cdot \left( {B - C} \right)\)
- Term B: \(B - C\)
- Term C: \(\dfrac{1}{6} \cdot \left( {B - C} \right)\)
- Term D: \(P \cdot C\)
- Term E: \(P \cdot \left( {B - C} \right)\)
- Term F: \(6 \cdot P \cdot \left( {B - C} \right)\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Ordnen Sie den vier gesuchten Größen (Aussage 1 bis 4) jeweils den für die Berechnung zutreffenden Term (aus A bis F) zu!
Aufgabe 1642
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zur x-Achse parallele Gerade
Gegeben ist eine Gerade g mit der Parameterdarstellung:
\(g:X = \left( {\begin{array}{*{20}{c}} 2\\ 1 \end{array}} \right) + t \cdot \overrightarrow a {\rm{ }}\) mit \(t \in {\Bbb R}\)
Aufgabenstellung
Geben Sie einen Vektor \(\overrightarrow a \in {{\Bbb R}^2}\) mit \(\overrightarrow a \ne \left( {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right)\) so an, dass die Gerade g parallel zur x-Achse verlauft!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1643
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rechtwinkeliges Dreieck
Die nachstehende Abbildung zeigt ein rechtwinkeliges Dreieck.
Aufgabenstellung:
Geben Sie einen Term zur Bestimmung der Länge der Seite w mithilfe von x und \(\beta \) an!
w=
Aufgabe 1644
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Grafisches Lösen einer quadratischen Gleichung
Gegeben ist die quadratische Gleichung
\({x^2} + x - 2 = 0\)
Man kann die gegebene Gleichung geometrisch mithilfe der Graphen zweier Funktionen f und g lösen, indem man die Gleichung f(x) = g(x) betrachtet.
Aufgabenstellung:
Die nachstehende Abbildung zeigt den Graphen der quadratischen Funktion f, wobei gilt: f(x) ∈ ℤ für jedes x ∈ ℤ. Zeichnen Sie in dieser Abbildung den Graphen der Funktion g ein!
Aufgabe 1645
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Volumen eines Drehzylinders
Das Volumen eines Drehzylinders kann als Funktion V der beiden Größen h und r aufgefasst werden. Dabei ist h die Hohe des Zylinders und r der Radius der Grundfläche.
Aufgabenstellung:
Verdoppelt man den Radius r und die Höhe h eines Zylinders, so erhalt man einen Zylinder, dessen Volumen x-mal so groß wie jenes des ursprünglichen Zylinders ist.
Geben Sie x an!
Aufgabe 1646
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lineare Zusammenhänge
Verbal gegebene Zusammenhange können in bestimmten Fällen als lineare Funktionen betrachtet werden.
Aufgabenstellung:
Welche der folgenden Zusammenhänge lassen sich mittels einer linearen Funktion beschreiben? Kreuzen Sie die beiden zutreffenden Zusammenhange an!
- Zusammenhang 1: Die Wohnungskosten steigen jährlich um 10 % des aktuellen Wertes.
- Zusammenhang 2: Der Flächeninhalt eines quadratischen Grundstücks wächst mit zunehmender Seitenlänge.
- Zusammenhang 3: Der Umfang eines Kreises wächst mit zunehmendem Radius.
- Zusammenhang 4: Die Länge einer 17 cm hohen Kerze nimmt nach dem Anzünden in jeder Minute um 8 mm ab.
- Zusammenhang 5: In einer Bakterienkultur verdoppelt sich stündlich die Anzahl der Bakterien.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1647
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften einer Polynomfunktion
Gegeben ist eine Polynomfunktion
\(f:{\Bbb R} \to {\Bbb R}{\text{ mit }}f\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\)
wobei \(\left( {a,b,c,d \in {\Bbb R};\,\,\,\,\,a \ne 0} \right)\)
Aufgabenstellung:
Nachstehend sind Aussagen über die Funktion f gegeben. Welche dieser Aussagen trifft/treffen für beliebige Werte von a ≠ 0, b, c und d auf jeden Fall zu? Kreuzen Sie die zutreffende(n) Aussage(n) an!
- Aussage 1: Die Funktion f hat mindestens einen Schnittpunkt mit der x-Achse.
- Aussage 2: Die Funktion f hat höchstens zwei lokale Extremstellen.
- Aussage 3: Die Funktion f hat höchstens zwei Punkte mit der x-Achse gemeinsam.
- Aussage 4: Die Funktion f hat genau eine Wendestelle.
- Aussage 5: Die Funktion f hat mindestens eine lokale Extremstelle.
Aufgabe 1648
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Exponentialfunktion
Für eine Exponentialfunktion f mit
\(f\left( x \right) = 5 \cdot {e^{\lambda \cdot x}}\) gilt: \(f\left( {x + 1} \right) = 2 \cdot f\left( x \right)\)
Aufgabenstellung:
Geben Sie den Wert von λ an!
Aufgabe 1649
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeit
Die Masse m(t) einer radioaktiven Substanz kann durch eine Exponentialfunktion m in Abhängigkeit von der Zeit t beschrieben werden. Zu Beginn einer Messung sind 100 mg der Substanz vorhanden, nach vier Stunden misst man noch 75 mg dieser Substanz.
Aufgabenstellung:
Bestimmen Sie die Halbwertszeit tH dieser radioaktiven Substanz in Stunden!