Redaktion - Differentialrechnung - Ableitungsregeln
Aufgabe 124
Summenregel beim Differenzieren
Gegeben sei die Funktion:
\(f\left( x \right) = {f_1} \pm {f_2};\)
Leite unter Anwendung der Definition des Differentialquotienten f‘(x) her.
Mathematik, Elektrotechnik und Physik
MINT Wissen auf maths2mind ohne Abo, Kreditkarte oder Tracking
Nach der Prüfung genießt du deinen Erfolg

Aufgabe 125
Produktregel beim Differenzieren
Gegeben sei die Funktion:
\(f(x) = {f_1} \cdot {f_2}\)
Leite unter Anwendung der Definition des Differentialquotienten f‘(x) her.
Aufgabe 126
Kettenregel beim Differenzieren
Gegeben sei die Funktion:
\(f(x) = {f_2}\left( {{f_1}\left( x \right)} \right);\)
Leite unter Anwendung der Definition des Differentialquotienten f‘(x) her.
Aufgabe 82
Steigung der Tangente in einem Punkt
Gegeben sei die Funktion:
\(f\left( x \right) = {x^2}\)
1. Teilaufgabe: Bestimme unter Anwendung der Definition des Differentialquotienten zunächst den Anstieg k der Tangente ganz allgemein.
2. Teilaufgabe: Berechne anschließend die Steigung k der Tangente durch Einsetzen für die Stelle x=3.