Headerbar Werbung für Region "nicht-DACH"
Redaktion - Potenzen mit ganzzahligen Exponenten
Aufgabe 38
Potenzen mit reellen Exponenten
Vereinfache:
\(w = {a^0}{\text{ für }}a \in {\Bbb R}\backslash \left\{ 0 \right\}\)
Banner Werbung für Region DE
Schon den nächsten Urlaub im Süden geplant?
Schnell noch kostenlos auf die Prüfung vorbereiten!
Nach der Prüfung den Erfolg genießen...

Aufgabe 39
Potenzen mit reellen Exponenten
Vereinfache:
\(w = {0^0}\)
Aufgabe 40
Potenzen mit reellen Exponenten
Vereinfache:
\(w = {0^n}{\text{ für }}n \ne 0\)
Aufgabe 41
Potenzen mit reellen Exponenten
Vereinfache:
\(w = {1^n}\)
Aufgabe 42
Potenzen mit reellen Exponenten
Vereinfache:
\(w = {( - 1)^n}\)
Banner Werbung für Region CH
Versteh' ich nicht - Gibt's nicht!
Frage kostenlos per eMail unser Supportteam
Damit niemand mehr bei Mathe in's Schwimmen kommt

Aufgabe 43
Potenzen mit reellen Exponenten
Vereinfache:
\(w = {( - 1)^{2n}}\)
Aufgabe 44
Potenzen mit reellen Exponenten
Vereinfache:
\(w = {( - 1)^{2n - 1}}\)
Aufgabe 45
Potenzen mit reellen Exponenten
Vereinfache:
\(w = {( - 1)^{2n + 1}}\)
Aufgabe 46
Potenzen mit reellen Exponenten
Vereinfache:
\(w = {4^3}\)
Banner Werbung für Region CH
Versteh' ich nicht - Gibt's nicht!
Frage kostenlos per eMail unser Supportteam
Damit niemand mehr bei Mathe in's Schwimmen kommt

Aufgabe 47
Potenzen mit reellen Exponenten:
Vereinfache:
\(w = {( - 4)^3}\)
Aufgabe 48
Potenzen mit übereinstimmenden Basen und Exponenten
Vereinfache:
\(w = \left( {{a^2} - 2a} \right) \cdot 4 - ({a^2} - 8a)\)
Aufgabe 49
Potenzen mit übereinstimmenden Basen
Vereinfache:
\(w = \left( { - \dfrac{2}{3}} \right) \cdot {\left( {\dfrac{2}{3}} \right)^3}\)