BMBWF - FA 6.1 .. FA 6.6: Sinusfunktion, Cosinusfunktion
Aufgabe 1280
AHS - 1_280 & Lehrstoff: FA 6.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionsterme finden
Gegeben sind die Graphen der Funktionen f und g.
Aufgabenstellung:
Geben Sie die Funktionsterme der Funktionen f und g an!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1281
AHS - 1_281 & Lehrstoff: FA 6.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graphen von Winkelfunktionen
Die nachstehende Abbildung zeigt die Graphen der Funktionen f1, f2, f3 und f4.
A | \(\sin \left( {2x} \right)\) |
B | \(- 2 \cdot \sin \left( x \right)\) |
C | \(\dfrac{1}{2} \cdot \sin \left( x \right)\) |
D | \(\cos \left( x \right)\) |
E | \(\cos \left( {\dfrac{x}{2}} \right)\) |
F | \(3 \cdot \cos \left( x \right)\) |
Aufgabenstellung:
Ordnen Sie den vier dargestellten Funktionsgraphen jeweils die passende Funktionsgleichung (aus A bis F) zu!
Deine Antwort | |
f1 | |
f2 | |
f3 | |
f4 |
Aufgabe 1086
AHS - 1_086 & Lehrstoff: FA 6.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Trigonometrische Funktionen skalieren
Gegeben ist der Graph der Funktion \(f\left( x \right) = \sin \left( {x + \dfrac{\pi }{2}} \right)\)
Aufgabenstellung:
Ergänzen Sie in der obenstehenden Zeichnung die Skalierung in den vorgegebenen fünf Kästchen!
Aufgabe 1282
AHS - 1_282 & Lehrstoff: FA 6.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Luftvolumen
Der Luftstrom beim Ein- und Ausatmen einer Person im Ruhezustand ändert sich in Abhängigkeit von der Zeit nach einer Funktion f. Zum Zeitpunkt t = 0 beginnt ein Atemzyklus. f(t) ist die bewegte Luftmenge in Litern pro Sekunde zum Zeitpunkt t in Sekunden. F(t) beschreibt das zum Zeitpunkt t in der Lunge vorhandene Luftvolumen, abgesehen vom Restvolumen.
Datenquelle: Timischl, W. (1995). Biomathematik: Eine Einführung für Biologen und Mediziner. 2. Auflage. Wien u. a.: Springer.)
Aufgabenstellung
Bestimmen Sie F(2,5) und interpretieren Sie den Wert!
Aufgabe 1066
AHS - 1_066 & Lehrstoff: FA 6.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wirkung der Parameter einer Sinusfunktion
Gegeben ist eine Sinusfunktion der Art \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right)\). Dabei beeinflussen die Parameter a und b das Aussehen des Graphen von f im Vergleich zum Graphen von \(g\left( x \right) = \sin \left( x \right)\)
A | Dehnung des Graphen der Funktion entlang der x-Achse auf das Doppelte |
B | Phasenverschiebung um 2 |
C | Doppelte Frequenz |
D | Streckung entlang der y-Achse auf das Doppelte |
E | Halbe Amplitude |
F | Verschiebung entlang der y-Achse um –2 |
Aufgabenstellung:
Ordnen Sie den Parameterwerten die entsprechenden Auswirkungen (aus A bis F) auf das Aussehen von f im Vergleich zu g zu!
Deine Antwort | |
\(a = 2\) | |
\(a = \dfrac{1}{2}\) | |
\(b = 2\) | |
\(b = \dfrac{1}{2}\) |
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1107
AHS - 1_107 & Lehrstoff: FA 6.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Trigonometrische Funktion
Gegeben ist der Graph der Funktion \(f\left( x \right) = \sin \left( x \right)\)
Aufgabenstellung:
Zeichnen Sie in die gegebene Abbildung den Graphen der Funktion \(g\left( x \right) = 2 \cdot \sin \left( x \right)\) ein!
Aufgabe 1108
AHS - 1_108 & Lehrstoff: FA 6.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Variation einer trigonometrischen Funktion
Gegeben ist der Graph der Funktion \(f\left( x \right) = \sin \left( x \right)\)
Aufgabenstellung:
Zeichnen Sie in die gegebene Abbildung den Graphen der Funktion \(g\left( x \right) = \sin \left( {2x} \right)\) ein!
Aufgabe 1109
AHS - 1_109 & Lehrstoff: FA 6.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Negative Sinusfunktion
Gegeben ist der Graph der Funktion \(f\left( x \right) = \sin \left( x \right)\)
Aufgabenstellung:
Zeichnen Sie in die gegebene Abbildung den Graphen der Funktion \(h\left( x \right) = - \sin \left( x \right)\)
Aufgabe 1283
AHS - 1_283 & Lehrstoff: FA 6.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Atemzyklus
Der Luftstrom beim Ein- und Ausatmen einer Person im Ruhezustand ändert sich in Abhängigkeit von der Zeit nach einer Funktion f. Zum Zeitpunkt t = 0 beginnt ein Atemzyklus. f ( t) ist die bewegte Luftmenge in Litern pro Sekunde zum Zeitpunkt t in Sekunden und wird durch die Gleichung \(f\left( t \right) = 0,5 \cdot \sin \left( {0,4 \cdot \pi \cdot t} \right)\) festgelegt.
(Datenquelle: Timischl, W. (1995). Biomathematik: Eine Einführung für Biologen und Mediziner. 2. Auflage. Wien u. a.: Springer.)
Aufgabenstellung
Berechnen Sie die Dauer eines gesamten Atemzyklus!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1284
AHS - 1_284 & Lehrstoff: FA 6.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Periodizität
Die nachstehende Abbildung zeigt die Graphen f1, f2 und f3 von Funktionen der Form \(f\left( x \right) = \sin \left( {b \cdot x} \right)\)
\({f_1} = \sin \left( x \right);\) \({f_2} = \sin \left( {2x} \right);\) \({f_3} = \sin \left( {\dfrac{x}{2}} \right)\)
Aufgabenstellung:
Bestimmen Sie jeweils die der Funktion entsprechende primitive (kleinste) Periode p!
Aufgabe 1139
AHS - 1_139 & Lehrstoff: FA 6.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kosinusfunktion
Die Kosinusfunktion ist eine periodische Funktion.
Aufgabenstellung:
Zeichnen Sie in der obenstehenden Abbildung die Koordinatenachsen und deren Skalierung so ein, dass der angegebene Graph dem Graphen der Kosinusfunktion entspricht! Die Skalierung beider Achsen muss jeweils zwei Werte umfassen!
Aufgabe 1285
AHS - 1_285 & Lehrstoff: FA 6.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zusammenhang zwischen Sinus- und Kosinusfunktion
Die Funktion cos(x) kann auch durch eine allgemeine Sinusfunktion beschrieben werden.
- Aussage 1: \(sin \left( {x + 2\pi } \right)\)
- Aussage 2: \(sin \left( {x + \dfrac{\pi }{2}} \right)\)
- Aussage 3: \(sin \left( {\dfrac{x}{2} - \pi } \right)\)
- Aussage 4: \(sin \left( {\dfrac{{x - \pi }}{2}} \right)\)
- Aussage 5: \(sin \left( {x - \dfrac{{3\pi }}{2}} \right)\)
Aufgabenstellung
Welche der obenstehend angeführten Sinusfunktionen beschreiben die Funktion cos(x)? Kreuzen Sie die beiden zutreffenden Funktionen an!