Absoluter und relativer Fehler
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4405
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Limnologie - Aufgabe B_478
Die Limnologie erforscht wichtige Kenngrößen von stehenden Gewässern wie etwa Temperatur oder Dichte.
Teil c
Die Dichte von Wasser in Abhängigkeit von der Temperatur kann unter bestimmten Bedingungen näherungsweise durch die Funktion ϱ beschrieben werden:
\(\rho \left( T \right) = a - b \cdot {\left( {T - 4} \right)^2}{\text{ mit }}0 < \rho \leqslant 10\)
T |
Temperatur in °C |
\(\rho \left( T \right)\) | |
a,b |
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Funktionsgleichung die Koordinaten des Scheitelpunkts S von ϱ ab.
S = ( | )
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie mathematisch, dass der Scheitelpunkt ein Hochpunkt der Funktion ϱ ist.
[1 Punkt]
Es gilt: a = 999,972 und b = 0,007
Die Gleichung einer Tangente an den Graphen der Funktion ϱ lautet:
\(f\left( T \right) = 0,028 \cdot T + d\)
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Parameter d.
[1 Punkt]
Jemand verwendet zur Berechnung der Dichte von Wasser bei 10 °C die obige Funktion ϱ mit den Parametern a = 999,972 und b = 0,007. Die Dichte von Wasser bei 10 °C beträgt jedoch laut einer Tabelle 999,700 kg/m3.
4. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Betrag des absoluten Fehlers bei Verwendung der Funktion ϱ anstelle des Tabellenwerts.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 4440
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Olympische Sommerspiele 2008 in Peking - Aufgabe B_508
Teil c
Bei den Olympischen Sommerspielen 2008 in Peking siegte Tirunesh Dibaba im Finale des 10 000-Meter-Laufes der Frauen. In der nachstehenden Tabelle sind einige Distanzen und die zugehörigen Zwischenzeiten für die erste Hälfte des Laufes angegeben.
Distanz in m | 1.000 | 2.000 | 3.000 | 4.000 | 5.000 |
Zeit in s | 180,5 | 360,2 | 543,8 | 726,6 | 910,0 |
Datenquelle: https://sportsscientists.com/2008/08/beijng-2008-10000-m-women/ [15.12.2020].
Die Zeit soll in Abhängigkeit von der Distanz durch eine lineare Regressionsfunktion beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe der Regressionsrechnung eine Gleichung dieser linearen Funktion.
[0 / 1 P.]
Tirunesh Dibaba benötigte für diesen 10 000-Meter-Lauf insgesamt 29 min 54,66 s.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Betrag des relativen Fehlers, wenn zur Berechnung der Laufzeit von Tirunesh Dibaba die ermittelte Regressionsfunktion verwendet wird.
[0 / 1 P.]
Aufgabe 4500
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Attersee - Aufgabe B_524
Teil a
Der zeitliche Verlauf der Temperatur des Attersees kann modellhaft durch die Funktion f beschrieben werden (siehe nachstehende Abbildung).
\(f\left( t \right) = a \cdot \sin \left( {b \cdot t - \dfrac{{2 \cdot \pi }}{3}} \right) + c{\text{ mit }}0 \leqslant t \leqslant 360\)
t | Zeit in Tagen |
f(t) | Temperatur zur Zeit t in °C |
a,b,c | Parameter |
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie mithilfe der obigen Abbildung den Parameter b.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Ordnen Sie den beiden Größen jeweils den zutreffenden Zahlenwert aus A bis D zu.
[0 / 1 P.]
- Größe 1: Amplitude von f
- Größe 2: linearer Mittelwert (Integralmittelwert) von f im Intervall [30; 210]
- Zahlenwert 1: 10
- Zahlenwert 2: 12
- Zahlenwert 3: 13
- Zahlenwert 4: 23
Zur Zeit t = 120 betrug die tatsächlich gemessene Temperatur 12 °C.
3. Teilaufgabe - Bearbeitungszeit 05:40
Geben Sie den Betrag des absoluten Fehlers an, der entsteht, wenn man statt der tatsächlich gemessenen Temperatur den Funktionswert an der Stelle t = 120 verwendet.
[0 / 1 P.]
Zur Überprüfung der Qualität der Modellfunktion f werden 1 000 Messwerte yider Temperatur zu verschiedenen Zeiten tierhoben. Für jeden dieser Messpunkte (ti| yi) wird die Differenz des Messwerts yizum Funktionswert f(ti) ermittelt. Diese Differenzen werden jeweils quadriert und danach aufsummiert. Die so erhaltene Summe wird mit s bezeichnet.
4. Teilaufgabe - Bearbeitungszeit 05:40
Vervollständigen Sie die nachstehende Formel zur Berechnung von s.
\(s = \sum\limits_{i = 1}^{1000} {???} \)
[0 / 1 P.]