Absolute Änderung
Die absolute Änderung entspricht der Differenz aus "oberem Wert" minus "unterem Wert". Sie hat - im Unterschied zur relativen bzw. prozentuellen Änderung - eine physikalische Einheit.
Hier findest du folgende Inhalte
Formeln
Änderungsmaße
Um die Änderung von einem Wert in Bezug auf einen anderen Wert quantifizieren zu können, bedient man sich verschiedener Änderungsmaße. Man unterscheidet dabei zwischen Änderung und Änderungsrate
- Änderung: Beschreibt die Veränderung zwischen dem "vorher" und dem "nachher" Wert einer Größe
- Absolute Änderung
- Relative Änderung
- Prozentuelle Änderung
- Änderungsrate: Beschreibt das Verhältnis der Veränderung einer abhängigen Größe \(\Delta y\) zur Veränderung einer unabhängigen Größe \(\Delta x\)
- Mittlere Änderungsrate
- Momentane Änderungsrate
Absolute Änderung
Die absolute Änderung entspricht der Differenz aus "oberem Wert" minus "unterem Wert" vom betrachteten Intervall. Sie hat - im Unterschied zur relativen bzw. prozentuellen Änderung - eine physikalische Einheit.
\(\begin{array}{l} \Delta y = {y_2} - {y_1}\\ \Delta {y_n} = {y_{n + 1}} - {y_n}\\ \Delta f = f\left( b \right) - f\left( a \right) \end{array}\)
Relative Änderung
Die relative Änderung entspricht der absoluten Änderung „bezogen auf den“ oder „relativ zum“ Grundwert. Sie errechnet sich als der Quotient aus der absoluten Änderung und dem Grundwert. Die relative Änderung ist eine Dezimalzahl, die keine physikalische Einheit hat.
\(\begin{array}{l} \dfrac{{\Delta y}}{{{y_1}}} = \dfrac{{{y_2} - {y_1}}}{{y1}}\\ \dfrac{{\Delta {y_n}}}{{{y_n}}} = \dfrac{{{y_{n + 1}} - {y_n}}}{{{y_n}}}\\ \dfrac{{\Delta f}}{{{f_a}}} = \dfrac{{f\left( b \right) - f\left( a \right)}}{{f\left( a \right)}} \end{array}\)
Prozentuelle Änderung
Die prozentuale Änderung entspricht dem Quotienten aus der absoluten Änderung und dem Grundwert, multipliziert mit 100%. Die prozentuale Änderung ist daher eine relative Änderung in Prozentschreibweise ohne physikalische Einheit. Der Grundwert y1 ist zugleich der 100% Wert. Die prozentuale Änderung beschreibt in Prozent, um wie viel sich ein gegebener Grundwert verändert, also erhöht oder verringert, hat.
\(p = \dfrac{{{y_2} - {y_1}}}{{{y_1}}} \cdot 100\% \)
Beispiel:
Datenquelle:
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/b…
- durchschnittliche Bevölkerung Österreichs im Jahr 2000: 8.011.566 EW
- durchschnittliche Bevölkerung Österreichs im Jahr 2019: 8.877.637 EW
absolute Änderung der Bevölkerung im Betrachtungszeitraum:
\(E{W_{2019}} - E{W_{2000}} = 8.877.637{\text{ EW}} - 8.011.566{\text{ EW}} = 866.071{\text{ EW}}\)
→ Die Bevölkerung ist im Betrachtungszeitraum um 866.071 Einwohner gestiegen
relative Änderung der Bevölkerung im Betrachtungszeitraum:
\(\dfrac{{E{W_{2019}} - E{W_{2000}}}}{{E{W_{2000}}}} = \dfrac{{8.877.637 - 8.011.566}}{{8.011.566}} = \dfrac{{866.071}}{{8.011.566}} = 0,1081\)
→ Die Bevölkerung ist im Betrachtungszeitraum auf das 1,1081 fache gestiegen
prozentuale Änderung der Bevölkerung im Betrachtungszeitraum:
\(\dfrac{{E{W_{2019}} - E{W_{2000}}}}{{E{W_{2000}}}} \cdot 100\% = \dfrac{{866.071}}{{8.011.566}} \cdot 100\% = 10,81\% \)
→ Die Bevölkerung ist im Betrachtungszeitraum um 10,81 % gestiegen
Differenzengleichungen
Eine Differenzengleichung ist eine rekursive Bildungsvorschrift für eine Zahlenfolge. Mit Hilfe der Differenzengleichung kann man aus der n-ten Zahl xn der Folge die darauf folgende n+1 Zahl xn+1 der Folge ermitteln. x0 ist der Startwert der Folge. n muss eine natürliche Zahl (1,2,3…) sein
Die lineare Differenzengleichung entspricht einer arithmetischen Folge. Dabei liegt zwischen dem n-ten und den n+1-ten Glied ein fester Betrag k.
\(\eqalign{ & {a_{n + 1}} = {a_n} \pm k........{\text{rekursive Darstellung}} \cr & {a_{n + 1}} - {a_n} = \pm k......{\text{Differenzendarstellung}} \cr} \)
Beispiel Startwert 100, je Zeitintervall kommen 5 Einheiten dazu
\(\eqalign{ & {a_0} = 100 \cr & {a_1} = {a_0} + k = 100 + 5 = 105 \cr & {a_2} = {a_1} + k = 105 + 5 = 110 \cr} \)
Die exponentielle Differenzengleichung entspricht einer geometrischen Folge. Dabei liegt zwischen dem n-ten und den n+1-ten Glied ein fester Prozentsatz bzw. ein gleicher relativer Anteil.
\(\eqalign{ & {a_{n + 1}} = {a_n} \cdot q{\text{ mit q}} = \dfrac{{{a_{n + 1}}}}{{{a_n}}}{\text{ = 1}} \pm \dfrac{p}{{100}}.....{\text{rekursive Darstellung}} \cr & {a_{n + 1}} - {a_n} = {a_n} \cdot \left( {q - 1} \right)..........{\text{Differenzendarstellung}} \cr} \)
Beispiel: Startwert 100, sinkt je Zeitintervall um 5%
\(\eqalign{ & {a_0} = 100\,\,\,\,\,\,\,\,5\% \buildrel \wedge \over = 1 - \frac{5}{{100}} = 0,95 \cr & {a_1} = 100 \cdot 0,95 = 95 \cr & {a_2} = 95 \cdot 0,95 = 90,25 \cr} \)
Mittlere Änderungsrate bzw. Differenzenquotient
Der Differenzenquotient gibt die mittlere Änderungsrate in einem Intervall an und entspricht der Steigung einer Sekante durch zwei Punkte am Graph der Funktion \(f\). Die mittlere Änderungsrate errechnet sich aus dem Quotienten von der Differenz der Funktionswerte (f(b), f(a)) zur Differenz der Argumente (b, a).
\(\begin{array}{l} {k_{{\rm{Sekante}}}} = \dfrac{{\Delta y}}{{\Delta x}} = \dfrac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}}\\ {k_{{\rm{Sekante}}}} = \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}} \end{array}\)
\(\dfrac{{\Delta y}}{{\Delta t}} = \dfrac{{y\left( {{t_2}} \right) - y\left( {{t_1}} \right)}}{{{t_2} - {t_1}}};\)
Während eine lineare Funktion (deren Graph eine Gerade ist) eine konstante Steigung k besitzt, hat eine Funktion höheren Grades (deren Graph eine "Kurve" ist) eine Steigung, die vom jeweiligen Punkt auf dem Graphen abhängt.
Der Differenzenquotient ermöglicht es, die Steigung einer nicht linearen Funktion für einen bestimmten Abschnitt, der durch 2 Punkte \({f\left( {{x_0}} \right)}\) und \({f\left( {{x_0} + \Delta x} \right)}\) auf dem Graphen definiert ist, zu berechnen. Dabei entspricht die jeweilige Steigung der Funktion der zugehörigen Steigung der Geraden (=Sekante) durch die beiden Punkte. Man spricht auch von der "mittleren Anstiegsrate"
Der Differenzenquotient ist leider nur eine Näherung für die Steigung der Funktion. Erst der Differentialquotient (als Grenzwert des Differenzenquotienten mit \(\vartriangle x \to 0\)) liefert dann eine exakte Berechnung, bei der die Sekante in eine Tangente übergeht, da der Abstand zwischen den beiden Punkten gegen Null geht.
Momentane Änderungsrate bzw. Differentialquotient
Der Differentialquotient gibt die momentane Änderungsrate im Punkt x0 an und entspricht der Steigung k der Tangente an die Funktion \(f\) . Er errechnet sich aus der 1. Ableitung \(f'\) der Funktion \(f\). Der Differentialquotient ist definiert als der Grenzwert (Limes) vom Differenzenquotient.
\(\eqalign{ & f'({x_0}) = {\left. {\dfrac{{df}}{{dx}}} \right|_{x = {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{f({x_0} + \Delta x) - f({x_0})}}{{\Delta x}} = \dfrac{{dy}}{{dx}} \cr & f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{{x_1} \to {x_0}} \dfrac{{f\left( {{x_1}} \right) - f\left( {{x_0}} \right)}}{{{x_1} - {x_0}}} \cr}\)
Grafisch lässt sich Differenzierbarkeit so deuten, dass an den Graphen der Funktion f(x) an jeder Stelle genau (!) eine Tangente existiert.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgaben
Aufgabe 1004
AHS - 1_004 & Lehrstoff: AN 1.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Änderungsmaße
Die nachstehende Abbildung zeigt den Graphen der Funktion f mit der Gleichung \(f\left( x \right) = 0,1 \cdot {x^2}\)
- Aussage 1: Die absolute Änderung in den Intervallen [0; 3] und [4; 5] ist gleich groß.
- Aussage 2: Die mittlere Änderungsrate der Funktion f in den Intervallen [0; 2] und [2; 4] ist gleich.\(\Delta y = {y_{n + 1}} - {y_n}\)
- Aussage 3: Die momentane Änderungsrate an der Stelle x = 5 hat den Wert 2,5.
- Aussage 4: Die momentane Änderungsrate an der Stelle x = 2 ist größer als die momentane Änderungsrate an der Stelle x = 6.
- Aussage 5: Die Steigung der Sekante durch die Punkte A = (3|f(3)) und B = (6|f(6)) ist größer als die momentane Änderungsrate an der Stelle x = 3.
Aufgabenstellung:
Kreuzen Sie die beiden Aussagen an, die für die gegebene Funktion f zutreffend sind!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 1409
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 13. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Preisänderungen
Ein Fernsehgerat wurde im Jahr 2012 zum Preis P0 verkauft, das gleiche Gerat wurde im Jahr 2014 zum Preis P2 verkauft.
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Der Term ___1___ gibt die absolute Preisänderung von 2012 auf 2014 an, der Term ___2___ die relative Preisänderung von 2012 auf 2014.
1 | |
\(\dfrac{{{P_0}}}{{{P_2}}}\) | A |
\({P_2} - {P_0}\) | B |
\(\dfrac{{{P_2} - {P_0}}}{2}\) | C |
2 | |
\(\dfrac{{{P_2}}}{{{P_0}}}\) | I |
\(\dfrac{{{P_0} - {P_2}}}{2}\) | II |
\(\dfrac{{{P_2} - {P_0}}}{{{P_0}}}\) | III |
Aufgabe 4071
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Altenpflege - Aufgabe A_262
Teil c
Die nachstehende Tabelle zeigt die Anzahl der Hausbesuche pro Jahr durch mobile Dienste im Rahmen der Altenpflege in Oberösterreich sowie deren prozentualen Anstieg jeweils im Vergleich zur Anzahl 2 Jahre davor.
Jahr |
Anzahl der Hausbesuche pro Jahr |
prozentualer Anstieg (gerundet) |
1994 | 498 086 | |
1996 | 589 168 | 18,3 % |
1998 | 802 146 | 36,1 % |
2000 | 1 017 793 | 26,9 % |
2002 | 1 176 665 | 15,6 % |
2004 | 1 360 543 | 15,6 % |
Der prozentuale Anstieg der Anzahl der Hausbesuche pro Jahr betrug sowohl von 2000 auf 2002 als auch von 2002 auf 2004 jeweils rund 15,6 %.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erklären Sie in Worten, warum sich die absolute Änderung der Anzahl der Hausbesuche pro Jahr von 2000 auf 2002 von jener von 2002 auf 2004 unterscheidet, obwohl die prozentualen Anstiege in den jeweiligen Zeitintervallen gleich sind.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie das Ergebnis der Berechnung \(\dfrac{{1360543 - 498086}}{{2004 - 1994}} \approx 86246\) im gegebenen Sachzusammenhang.
[1 Punkt]
Aufgabe 1299
AHS - 1_299 & Lehrstoff: AN 1.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Treibstoffpreise
Pro Liter Diesel zahlte man im Jahr 2004 durchschnittlich T0 Euro, im Jahr 2014 betrug der durchschnittliche Preis pro Liter Diesel T10 Euro.
Aufgabenstellung
Geben Sie jeweils einen Term zur Berechnung der absoluten und der relativen Preisänderung von 2004 auf 2014 für den durchschnittlichen Preis pro Liter Diesel an!
Aufgabe 1085
AHS - 1_085 & Lehrstoff: FA 5.6
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Relative und absolute Zunahme
Die Formel \(N\left( t \right) = {N_0} \cdot {a^t}{\text{ mit }}a > 1\) beschreibt ein exponentielles Wachstum.
- Aussage 1: Die relative Zunahme ist in gleichen Zeitintervallen gleich groß.
- Aussage 2: Die absolute Zunahme ist in gleichen Zeitintervallen gleich groß.
- Aussage 3: Die relative Zunahme ist unabhängig von N0.
- Aussage 4: Die relative Zunahme ist abhängig von a.
- Aussage 5: Die absolute Zunahme ist abhängig von a.
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Aussage(n) an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 1224
AHS - 1_224 & Lehrstoff: AN 1.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Änderung der Spannung
Die nachstehende Abbildung zeigt den zeitlichen Verlauf t (in s) der Spannung U (in V) während eines physikalischen Experiments.
Aufgabenstellung:
Ermitteln Sie die absolute und die relative Änderung der Spannung während der ersten 10 Sekunden des Experiments!
Aufgabe 1228
AHS - 1_228 & Lehrstoff: WS 1.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Nationalratswahlen
In der folgenden Abbildung sind die Ergebnisse der Nationalratswahl 2006 (linksstehende Balken) und der Nationalratswahl 2008 (rechtsstehende Balken) dargestellt. Alle Prozentsätze beziehen sich auf die Anzahl der gültigen abgegebenen Stimmen, die 2006 und 2008 ungefähr gleich war.
- Aussage 1: Das BZÖ hat seinen Stimmenanteil von 2006 auf 2008 um mehr als 100 % gesteigert.
- Aussage 2: Die GRÜNEN erreichten 2006 weniger Stimmenanteile als 2008.
- Aussage 3: Der Stimmenanteil der ÖVP hat von 2006 auf 2008 um fast ein Viertel abgenommen.
- Aussage 4: Die Anzahl der erreichten Stimmen für die SPÖ hat von 2006 auf 2008 um 6 % abgenommen.
- Aussage 5: Das BZÖ hat von 2006 auf 2008 deutlich mehr Stimmen dazugewonnen als die FPÖ.
Aufgabenstellung
Überprüfen Sie anhand der Abbildung die obenstehenden Aussagen und kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1499
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 19. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Verurteilungen Jugendlicher
Jugendliche sind laut Jugendschutzgesetz 1988 (Fassung vom 23.3.2016) Personen, die das 14. Lebensjahr, aber noch nicht das 18. Lebensjahr vollendet haben. Die nachstehende Grafik zeigt für den Zeitraum von 1950 bis 2010 sowohl die absolute Anzahl der Verurteilungen Jugendlicher als auch die Anzahl der Verurteilungen Jugendlicher bezogen auf 100 000 Jugendliche.
- Aussage 1: 792 000
- Aussage 2: 3 063 000
- Aussage 3: 3 863 000
- Aussage 4: 387 000
- Aussage 5: 258 000
- Aussage 6: 2 580 000
Aufgabenstellung:
Wie viele Jugendliche insgesamt gab es in Österreich in etwa im Jahr 2010? Kreuzen Sie die zutreffende Anzahl an!
Aufgabe 1770
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. Mai 2020 - Teil-1-Aufgaben - 13. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Absolute und relative Änderung einer Funktion
Die absolute Änderung einer Funktion f: ℝ → ℝ in einem Intervall [a; b] wird mit A bezeichnet, die relative Änderung von f im Intervall [a; b] wird mit R bezeichnet. Dabei gilt: f(a) ≠ 0 und a < b.
Aufgabenstellung:
Geben Sie eine Gleichung an, die den Zusammenhang zwischen A und R beschreibt.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 1842
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 13. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Diät
Hannes machte eine zehnwöchige Diät und notierte dabei am Beginn jeder Woche und am Ende der Diät seine Körpermasse (in kg). Diese Werte sind im nachstehenden Diagramm dargestellt.
Aufgabenstellung:
Geben Sie die absolute Änderung (in kg) und die relative Änderung (in %) der Körpermasse von Hannes vom Beginn bis zum Ende der zehnwöchigen Diät an.
- absolute Änderung: kg
- relative Änderung: %
[0 / ½ / 1 P.]
Aufgabe 4323
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gold - Aufgabe A_160
Das Edelmetall Gold gilt als besonders wertvoll, weil es selten vorkommt, leicht zu Schmuck verarbeitet werden kann und sehr beständig ist.
Teil c
Die nachstehende Grafik zeigt die weltweite jährliche Förderung von Gold ab dem Jahr 1900 in Tonnen.
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Grafik ab, in welchem Jahrzehnt die weltweite Förderung absolut am stärksten gestiegen ist.
[1 Punkt]
Aufgabe 4405
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Limnologie - Aufgabe B_478
Die Limnologie erforscht wichtige Kenngrößen von stehenden Gewässern wie etwa Temperatur oder Dichte.
Teil c
Die Dichte von Wasser in Abhängigkeit von der Temperatur kann unter bestimmten Bedingungen näherungsweise durch die Funktion ϱ beschrieben werden:
\(\rho \left( T \right) = a - b \cdot {\left( {T - 4} \right)^2}{\text{ mit }}0 < \rho \leqslant 10\)
T |
Temperatur in °C |
\(\rho \left( T \right)\) | |
a,b |
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Funktionsgleichung die Koordinaten des Scheitelpunkts S von ϱ ab.
S = ( | )
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie mathematisch, dass der Scheitelpunkt ein Hochpunkt der Funktion ϱ ist.
[1 Punkt]
Es gilt: a = 999,972 und b = 0,007
Die Gleichung einer Tangente an den Graphen der Funktion ϱ lautet:
\(f\left( T \right) = 0,028 \cdot T + d\)
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Parameter d.
[1 Punkt]
Jemand verwendet zur Berechnung der Dichte von Wasser bei 10 °C die obige Funktion ϱ mit den Parametern a = 999,972 und b = 0,007. Die Dichte von Wasser bei 10 °C beträgt jedoch laut einer Tabelle 999,700 kg/m3.
4. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Betrag des absoluten Fehlers bei Verwendung der Funktion ϱ anstelle des Tabellenwerts.
[1 Punkt]