Österreichische AHS Matura - 2014.05.09 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1349
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Positive rationale Zahlen
Gegeben ist die Zahlenmenge ℚ+.
- Aussage 1: \(\sqrt 5\)
- Aussage 2: \(0,9 \cdot {10^{ - 3}}\)
- Aussage 3: \(\sqrt {0,01}\)
- Aussage 4: \(\dfrac{\pi }{4}\)
- Aussage 5: \(- 1,41 \cdot {10^3}\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie jene beiden Zahlen an, die Elemente dieser Zahlenmenge sind!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1348
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Punktladungen
Der Betrag F der Kraft zwischen zwei Punktladungen q1 und q2 im Abstand r wird beschrieben durch die Gleichung \(F = C \cdot \dfrac{{{q_1} \cdot {q_2}}}{{{r^2}}}\) (C ... physikalische Konstante).
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Geben Sie an, um welchen Faktor sich der Betrag F der Kraft ändert, wenn der Betrag der Punktladungen q1 und q2 jeweils verdoppelt und der Abstand r zwischen diesen beiden Punktladungen halbiert wird!
Aufgabe 1347
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Die Anzahl der Lösungen der quadratischen Gleichung \(r \cdot {x^2} + s \cdot x + t = 0\) in der Menge der reellen Zahlen hängt von den Koeffizienten r, s und t ab.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Die quadratische Gleichung \(r \cdot {x^2} + s \cdot x + t = 0\) hat genau dann für alle \(r \ne 0{\text{ mit }}r,s,t \in {\Bbb R}\) Satzteil 1, wenn Satzteil 2 gilt.
- Satzteil 1_1: zwei reelle Lösungen
- Satzteil 1_2: keine reelle Lösung
- Satzteil 1_3: genau eine reelle Lösung
- Satzteil 2_1: \({r^2} - 4st > 0\)
- Satzteil 2_2: \({t^2} = 4rs\)
- Satzteil 2_3: \({s^2} - 4rt > 0\)
Aufgabe 1346
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektorkonstruktion
Die Abbildung zeigt zwei als Pfeile dargestellte Vektoren
Aufgabenstellung:
Ergänzen Sie die unten stehende Abbildung um einen Pfeil, der vom Punkt P ausgeht und den Vektor \(\overrightarrow a - \overrightarrow b \) darstellt!
Aufgabe 1345
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parallele Geraden
Gegeben sind Gleichungen der Geraden g und h. Die beiden Geraden sind nicht ident.
\(\begin{array}{l} g:y = - \dfrac{x}{4} + 8\\ h:X = \left( {\begin{array}{*{20}{c}} 4\\ 3 \end{array}} \right) + s \cdot \left( {\begin{array}{*{20}{c}} 4\\ { - 1} \end{array}} \right) {\text{mit s}} \in {\Bbb R} \end{array} \)
Aufgabenstellung:
Begründen Sie, warum diese beiden Geraden parallel zueinander liegen!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1344
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Definition der Winkelfunktionen
Die nachstehende Abbildung zeigt ein rechtwinkeliges Dreieck PQR.
- Aussage 1: \(\sin \alpha = \dfrac{p}{r}\)
- Aussage 2: \(\sin \alpha = \dfrac{q}{r}\)
- Aussage 3: \(\tan \beta = \dfrac{p}{q}\)
- Aussage 4: \(\tan \alpha = \dfrac{r}{p}\)
- Aussage 5: \(\cos \beta = \dfrac{p}{r}\)
Aufgabenstellung:
Kreuzen Sie jene beiden Gleichungen an, die für das dargestellte Dreieck gelten!
Aufgabe 1343
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zerfallsprozess
Der unten abgebildete Graph einer Funktion N stellt einen exponentiellen Zerfallsprozess dar; Dabei bezeichnet t die Zeit und N(t) die zum Zeitpunkt t vorhandene Menge des zerfallenden Stoffes. Für die zum Zeitpunkt t = 0 vorhandene Menge gilt: N(0) = 800.
Mit tH ist diejenige Zeitspanne gemeint, nach deren Ablauf die ursprüngliche Menge des zerfallenden Stoffes auf die Hälfte gesunken ist.
- Aussage 1: \({t_H} = 6\)
- Aussage 2: \({t_H} = 2\)
- Aussage 3: \({t_H} = 3\)
- Aussage 4: \(N\left( {{t_H}} \right) = 400\)
- Aussage 5: \(N\left( {{t_H}} \right) = 500\)
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1342
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Steigung einer linearen Funktion
Fünf lineare Funktionen sind in verschiedener Weise dargestellt.
- Aussage 1:
x m(x) 5 3 6 1 8 -3
- Aussage 2:
\(g\left( x \right) = - 2 + 3x\)
- Aussage 3:
x h(x) 0 -2 1 0 2 2
- Aussage 4:
- Aussage 5:
\(l\left( x \right) = \dfrac{{3 - 4x}}{2}\)
Aufgabenstellung - Bearbeitungszeit 05:40
Kreuzen Sie jene beiden Darstellungen an, bei denen die Steigung der dargestellten linearen Funktion den Wert k = –2 annimmt!
Aufgabe 1341
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichung einer quadratischen Funktion
Im nachfolgenden Koordinatensystem ist der Graph einer quadratischen Funktion f mit der Gleichung \(f\left( x \right) = a \cdot {x^2} + b{\text{ mit }}a,b \in {\Bbb R}\) dargestellt.
Aufgabenstellung:
Ermitteln Sie die Werte der Parameter a und b! Die für die Berechnung relevanten Punkte mit ganzzahligen Koordinaten können dem Diagramm entnommen werden.
a =
b =
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1340
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wachstum
Die Funktion f beschreibt einen exponentiellen Wachstumsprozess der Form \(f\left( t \right) = c \cdot {a^t}\) in Abhängigkeit von der Zeit t.
t | f(t) |
0 | 400 |
1 | 600 |
2 | f(2) |
3 | f(3) |
Aufgabenstellung:
Ermitteln Sie für t = 2 und t = 3 die Werte der Funktion f!
f(2) =
f(3) =
Aufgabe 1339
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Exponentialfunktion
Eine reelle Funktion f mit der Gleichung \(f\left( x \right) = c \cdot {a^x}\) ist eine Exponentialfunktion, für deren reelle Parameter c und a gilt: c ≠ 0, a > 1.
- Aussage 1: \(f\left( {k \cdot x} \right) = k \cdot f\left( x \right)\)
- Aussage 2: \(\dfrac{{f\left( {x + h} \right)}}{{f\left( x \right)}} = {a^h}\)
- Aussage 3: \(f\left( {x + 1} \right) = a \cdot f\left( x \right)\)
- Aussage 4: \(f\left( 0 \right) = 0\)
- Aussage 5: \(f\left( {x + h} \right) = f\left( x \right) + f\left( h \right)\)
Aufgabenstellung:
Kreuzen Sie jene beiden Aussagen an, die auf diese Exponentialfunktion f und alle Werte k, h ∈ ℝ, k > 1 zutreffen!
Aufgabe 1338
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinusfunktion
Im untenstehenden Diagramm sind die Graphen zweier Funktionen f und g dargestellt.
Die Funktion f hat die Funktionsgleichung \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right)\) mit den reellen Parametern a und b. Wenn diese Parameter in entsprechender Weise verändert werden, erhält man die Funktion g.
Aufgabenstellung:
Wie müssen die Parameter a und b verändert werden, um aus f die Funktion g zu erhalten? Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Um den Graphen von g zu erhalten, muss a ___1___ und b ___2___ .
1 | |
verdoppelt werden | A |
halbiert werden | B |
gleich bleiben | C |
2 | |
verdoppelt werden | I |
halbiert werden | II |
gleich bleiben | III |