Werbung für Region 4
Österreichische AHS Matura - 2014.05.09 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1349
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Positive rationale Zahlen
Gegeben ist die Zahlenmenge ℚ+.
- Aussage 1: \(\sqrt 5\)
- Aussage 2: \(0,9 \cdot {10^{ - 3}}\)
- Aussage 3: \(\sqrt {0,01}\)
- Aussage 4: \(\dfrac{\pi }{4}\)
- Aussage 5: \(- 1,41 \cdot {10^3}\)
Aufgabenstellung:
Kreuzen Sie jene beiden Zahlen an, die Elemente dieser Zahlenmenge sind!
Werbung für Region 1
Mathematik, Elektrotechnik und Physik
MINT Wissen auf maths2mind ohne Abo und ohne Kreditkarte
Nach der Prüfung genießt du deinen Erfolg

Aufgabe 1348
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Punktladungen
Der Betrag F der Kraft zwischen zwei Punktladungen q1 und q2 im Abstand r wird beschrieben durch die Gleichung \(F = C \cdot \dfrac{{{q_1} \cdot {q_2}}}{{{r^2}}}\) (C ... physikalische Konstante).
Aufgabenstellung:
Geben Sie an, um welchen Faktor sich der Betrag F der Kraft ändert, wenn der Betrag der Punktladungen q1 und q2 jeweils verdoppelt und der Abstand r zwischen diesen beiden Punktladungen halbiert wird!
Aufgabe 1347
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Die Anzahl der Lösungen der quadratischen Gleichung \(r \cdot {x^2} + s \cdot x + t = 0\) in der Menge der reellen Zahlen hängt von den Koeffizienten r, s und t ab.
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Die quadratische Gleichung \(r \cdot {x^2} + s \cdot x + t = 0\) hat genau dann für alle r ≠ 0; r, s, t ∈ ℝ ___1___ , wenn ___2___ gilt.
1 | |
zwei reelle Lösungen | A |
keine reelle Lösung | B |
genau eine reelle Lösung | C |
2 | |
\({r^2} - 4st > 0\) | I |
\({t^2} = 4rs\) | II |
\({s^2} - 4rt > 0\) | III |
Aufgabe 1346
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektorkonstruktion
Die Abbildung zeigt zwei als Pfeile dargestellte Vektoren
Aufgabenstellung:
Ergänzen Sie die unten stehende Abbildung um einen Pfeil, der vom Punkt P ausgeht und den Vektor \(\overrightarrow a - \overrightarrow b \) darstellt!
Aufgabe 1345
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parallele Geraden
Gegeben sind Gleichungen der Geraden g und h. Die beiden Geraden sind nicht ident.
\(\begin{array}{l} g:y = - \dfrac{x}{4} + 8\\ h:X = \left( {\begin{array}{*{20}{c}} 4\\ 3 \end{array}} \right) + s \cdot \left( {\begin{array}{*{20}{c}} 4\\ { - 1} \end{array}} \right) {\text{mit s}} \in {\Bbb R} \end{array} \)
Aufgabenstellung:
Begründen Sie, warum diese beiden Geraden parallel zueinander liegen!
Werbung für Region 2
Schon für den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 1344
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Definition der Winkelfunktionen
Die nachstehende Abbildung zeigt ein rechtwinkeliges Dreieck PQR.
- Aussage 1: \(\sin \alpha = \dfrac{p}{r}\)
- Aussage 2: \(\sin \alpha = \dfrac{q}{r}\)
- Aussage 3: \(\tan \beta = \dfrac{p}{q}\)
- Aussage 4: \(\tan \alpha = \dfrac{r}{p}\)
- Aussage 5: \(\cos \beta = \dfrac{p}{r}\)
Aufgabenstellung:
Kreuzen Sie jene beiden Gleichungen an, die für das dargestellte Dreieck gelten!
Aufgabe 1343
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zerfallsprozess
Der unten abgebildete Graph einer Funktion N stellt einen exponentiellen Zerfallsprozess dar; Dabei bezeichnet t die Zeit und N(t) die zum Zeitpunkt t vorhandene Menge des zerfallenden Stoffes. Für die zum Zeitpunkt t = 0 vorhandene Menge gilt: N(0) = 800.
Mit tH ist diejenige Zeitspanne gemeint, nach deren Ablauf die ursprüngliche Menge des zerfallenden Stoffes auf die Hälfte gesunken ist.
- Aussage 1: \({t_H} = 6\)
- Aussage 2: \({t_H} = 2\)
- Aussage 3: \({t_H} = 3\)
- Aussage 4: \(N\left( {{t_H}} \right) = 400\)
- Aussage 5: \(N\left( {{t_H}} \right) = 500\)
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1342
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Steigung einer linearen Funktion
Fünf lineare Funktionen sind in verschiedener Weise dargestellt.
- Aussage 1:
x m(x) 5 3 6 1 8 -3
- Aussage 2:
\(g\left( x \right) = - 2 + 3x\)
- Aussage 3:
x h(x) 0 -2 1 0 2 2
- Aussage 4:
Bild
- Aussage 5:
\(l\left( x \right) = \dfrac{{3 - 4x}}{2}\)
Aufgabenstellung:
Kreuzen Sie jene beiden Darstellungen an, bei denen die Steigung der dargestellten linearen Funktion den Wert k = –2 annimmt!
Aufgabe 1341
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichung einer quadratischen Funktion
Im nachfolgenden Koordinatensystem ist der Graph einer quadratischen Funktion f mit der Gleichung \(f\left( x \right) = a \cdot {x^2} + b{\text{ mit }}a,b \in {\Bbb R}\) dargestellt.
Aufgabenstellung:
Ermitteln Sie die Werte der Parameter a und b! Die für die Berechnung relevanten Punkte mit ganzzahligen Koordinaten können dem Diagramm entnommen werden.
a =
b =
Werbung für Region 3
Versteh' ich nicht - Gibt's nicht!
Frage kostenlos per eMail unser Supportteam
Damit niemand mehr bei Mathe in's Schwimmen kommt

Aufgabe 1340
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wachstum
Die Funktion f beschreibt einen exponentiellen Wachstumsprozess der Form \(f\left( t \right) = c \cdot {a^t}\) in Abhängigkeit von der Zeit t.
t | f(t) |
0 | 400 |
1 | 600 |
2 | f(2) |
3 | f(3) |
Aufgabenstellung:
Ermitteln Sie für t = 2 und t = 3 die Werte der Funktion f!
f(2) =
f(3) =
Aufgabe 1339
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Exponentialfunktion
Eine reelle Funktion f mit der Gleichung \(f\left( x \right) = c \cdot {a^x}\) ist eine Exponentialfunktion, für deren reelle Parameter c und a gilt: c ≠ 0, a > 1.
- Aussage 1: \(f\left( {k \cdot x} \right) = k \cdot f\left( x \right)\)
- Aussage 2: \(\dfrac{{f\left( {x + h} \right)}}{{f\left( x \right)}} = {a^h}\)
- Aussage 3: \(f\left( {x + 1} \right) = a \cdot f\left( x \right)\)
- Aussage 4: \(f\left( 0 \right) = 0\)
- Aussage 5: \(f\left( {x + h} \right) = f\left( x \right) + f\left( h \right)\)
Aufgabenstellung:
Kreuzen Sie jene beiden Aussagen an, die auf diese Exponentialfunktion f und alle Werte k, h ∈ ℝ, k > 1 zutreffen!
Aufgabe 1338
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinusfunktion
Im untenstehenden Diagramm sind die Graphen zweier Funktionen f und g dargestellt.
Die Funktion f hat die Funktionsgleichung \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right)\) mit den reellen Parametern a und b. Wenn diese Parameter in entsprechender Weise verändert werden, erhält man die Funktion g.
Aufgabenstellung:
Wie müssen die Parameter a und b verändert werden, um aus f die Funktion g zu erhalten? Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Um den Graphen von g zu erhalten, muss a ___1___ und b ___2___ .
1 | |
verdoppelt werden | A |
halbiert werden | B |
gleich bleiben | C |
2 | |
verdoppelt werden | I |
halbiert werden | II |
gleich bleiben | III |