Werbung für Region 4
Österreichische AHS Matura - 2014.09.17 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1373
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Aussagen über Zahlenmengen
Untenstehend sind fünf Aussagen über Zahlen aus den Zahlenmengen ℕ, ℤ, ℚ und ℝ angeführt.
Aufgabenstellung:
Kreuzen Sie die beiden Aussagen an, die korrekt sind!
- Aussage 1: Reelle Zahlen mit periodischer oder endlicher Dezimaldarstellung sind rationale Zahlen.
- Aussage 2: Die Differenz zweier natürlicher Zahlen ist stets eine natürliche Zahl.
- Aussage 3: Alle Wurzelausdrücke der Form \(\sqrt a {\text{ mit }}a \in {\Bbb R}{\text{ und }}a > 0\) sind stets irrationale Zahlen
- Aussage 4: Zwischen zwei verschiedenen rationalen Zahlen a, b existiert stets eine weitere rationale Zahl.
- Aussage 5: Der Quotient zweier negativer ganzer Zahlen ist stets eine positive ganze Zahl.
Werbung für Region 3
Versteh' ich nicht - Gibt's nicht!
Frage kostenlos per eMail unser Supportteam
Damit niemand mehr bei Mathe in's Schwimmen kommt

Aufgabe 1372
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Definitionsmengen
Es sind vier Terme und sechs Mengen (A bis F) gegeben.
Aufgabenstellung:
Ordnen Sie den vier Termen jeweils die entsprechende größtmögliche Definitionsmenge DA, DB, ... , DF in der Menge der reellen Zahlen zu!
- Term 1: \(\ln \left( {x + 1} \right)\)
- Term 2: \(\sqrt {1 - x} \)
- Term 3: \(\dfrac{{2 \cdot x}}{{x \cdot {{\left( {x + 1} \right)}^2}}}\)
- Term 4: \(\dfrac{{2 \cdot x}}{{{x^2} + 1}}\)
- Definitionsmenge A: \({D_A} = {\Bbb R}\)
- Definitionsmenge B: \({D_B} = \left( {1;\infty } \right)\)
- Definitionsmenge C: \({D_C} = \left( { - 1;\infty } \right)\)
- Definitionsmenge D: \({D_D} = {\Bbb R}\backslash \left\{ { - 1;0} \right\}\)
- Definitionsmenge E: \({D_E} = \left( { - \infty ;1} \right)\)
- Definitionsmenge F: \({D_F} = \left( { - \infty ;1} \right)\)
Aufgabe 1371
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Gegeben ist die quadratische Gleichung
\({\left( {x - 7} \right)^2} = 3 + c{\text{ mit x}} \in {\Bbb R}{\text{ und c}} \in {\Bbb R}\)
Aufgabenstellung:
Geben Sie den Wert des Parameters c so an, dass diese quadratische Gleichung in ℝ genau eine Lösung hat!
c= ___
Aufgabe 1370
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoraddition
Gegeben sind die beiden Vektoren \(\overrightarrow a {\text{ und }}\overrightarrow b \).
Aufgabenstellung:
Stellen Sie im untenstehenden Koordinatensystem den Vektor \(\overrightarrow s {\text{ mit }}\overrightarrow s = 2 \cdot \overrightarrow a + \overrightarrow b \) als Pfeil dar.
Aufgabe 1369
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parameterdarstellung von Geraden
Gegeben ist eine Gerade g:
\(g:X = \left( {\begin{array}{*{20}{c}} 4\\ 1\\ 2 \end{array}} \right) + s \cdot \left( {\begin{array}{*{20}{c}} 2\\ { - 3}\\ 1 \end{array}} \right){\rm{ }}\)mit \({\text{s}} \in {\Bbb R}\)
Aufgabenstellung:
Welche der folgenden Geraden hi (i = 1, 2, ... , 5) mit ti ∈ ℝ (i = 1, 2, ... , 5) sind parallel zu g? Kreuzen Sie die beiden zutreffenden Antworten an!
- Gerade 1: \({h_1}:X = \left( {\begin{array}{*{20}{c}} 8\\ 2\\ 3 \end{array}} \right) + {t_1} \cdot \left( {\begin{array}{*{20}{c}} { - 3}\\ 1\\ 2 \end{array}} \right)\)
- Gerade 2: \({h_2}:X = \left( {\begin{array}{*{20}{c}} 3\\ 4\\ { - 7} \end{array}} \right) + {t_2} \cdot \left( {\begin{array}{*{20}{c}} 4\\ { - 6}\\ 2 \end{array}} \right)\)
- Gerade 3: \({h_3}:X = \left( {\begin{array}{*{20}{c}} 4\\ 1\\ 2 \end{array}} \right) + {t_3} \cdot \left( {\begin{array}{*{20}{c}} { - 2}\\ 1\\ { - 2} \end{array}} \right)\)
- Gerade 4: \({h_4}:X = \left( {\begin{array}{*{20}{c}} 3\\ 5\\ { - 1} \end{array}} \right) \cdot {t_4} \cdot \left( {\begin{array}{*{20}{c}} { - 2}\\ 3\\ { - 1} \end{array}} \right)\)
- Gerade 5: \({h_5}:X = \left( {\begin{array}{*{20}{c}} 1\\ 2\\ 4 \end{array}} \right) + {t_5} \cdot \left( {\begin{array}{*{20}{c}} 1\\ 2\\ { - 3} \end{array}} \right)\)
Werbung für Region 4
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 1368
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Steigungswinkel
Das nachstehend abgebildete Verkehrszeichen besagt, dass eine Straße auf einer horizontalen Entfernung von 100 m um 7 m an Höhe gewinnt.
Aufgabenstellung:
Geben Sie eine Formel zur Berechnung des Gradmaßes des Steigungswinkels α dieser Straße an!
Aufgabe 1367
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Funktion
Eine quadratische Funktion f der Form
\(f\left( x \right) = a \cdot {x^2} + b{\text{ mit }}a,b \in {\Bbb R}{\text{ und }}a \ne 0\)
ist gegeben.
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Aussage(n) an!
- Aussage 1: Der Graph der Funktion f hat zwei verschiedene reelle Nullstellen, wenn gilt: a > 0 und b < 0.
- Aussage 2: Der Graph der Funktion f mit b = 0 berührt die x-Achse in der lokalen Extremstelle.
- Aussage 3: Der Graph der Funktion f mit b > 0 berührt die x-Achse im Ursprung.
- Aussage 4: Für a < 0 hat der Graph der Funktion f einen Hochpunkt.
- Aussage 5: Für die lokale Extremstelle xs der Funktion f gilt immer: xs = b.
Aufgabe 1366
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften von Funktionen zuordnen
Gegeben sind vier Funktionstypen. Für alle unten angeführten Funktionen gilt:
\(a \ne 0;b \ne 0;a,b \in {\Bbb R}\)
Aufgabenstellung:
Ordnen Sie den vier Funktionstypen jeweils die passende Eigenschaft (aus A bis F) zu!
- Funktionstyp 1: Lineare Funktion f mit \(f\left( x \right) = a \cdot x + b\)
- Funktionstyp 2: Exponentialfunktion f mit \(f\left( x \right) = a \cdot {b^x}{\text{ mit b > 0}}{\text{,b}} \ne {\text{1}}\)
- Funktionstyp 3: Wurzelfunktion f mit \(f\left( x \right) = a \cdot {x^{\dfrac{1}{2}}} + b\)
- Funktionstyp 4: Sinusfunktion f mit \(f\left( x \right) = a \cdot sin\left( {b \cdot x} \right)\)
- Eigenschaft A: Die Funktion f ist für a > 0 und 0 < b < 1 streng monoton fallend.
- Eigenschaft B: Die Funktion f besitzt genau drei Nullstellen.
- Eigenschaft C: Die Funktion f besitzt in jedem Punkt die gleiche Steigung.
- Eigenschaft D: Der Graph der Funktion f besitzt einen Wendepunkt im Ursprung.
- Eigenschaft E: Die Funktion f ist für b = 2 konstant.
- Eigenschaft F: Die Funktion f ist nur für x ≥ 0 definiert.
Aufgabe 1365
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Steigung des Graphen einer linearen Funktion
Gegeben ist eine Gleichung einer Geraden g in der Ebene:
\(3 \cdot x + 5 \cdot y = 15\)
Aufgabenstellung:
Geben Sie die Steigung des Graphen der dieser Gleichung zugeordneten linearen Funktion an!
Werbung für Region 2
Schon für den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 1364
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vergleich dreier Geraden
In der untenstehenden Graphik sind drei Geraden g1, g2 und g3 dargestellt. Es gilt:
\(\eqalign{ & {g_1}:y = {k_1} \cdot x + {d_1} \cr & {g_2}:y = {k_2} \cdot x + {d_2} \cr & {g_3}:y = {k_3} \cdot x + {d_3} \cr} \)
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
- Aussage 1: \({k_1} < {k_2}\)
- Aussage 2: \({d_3} > {d_2}\)
- Aussage 3: \({k_2} > {k_3}\)
- Aussage 4: \({k_3} < {k_1}\)
- Aussage 5: \({d_1} < {d_3}\)
Aufgabe 1363
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften einer linearen Funktion
Eine Funktion f wird durch die Funktionsgleichung
\(f\left( x \right) = k \cdot x + d{\text{ mit }}k,d \in {\Bbb R}{\text{ und }}k \ne 0\) beschrieben.
Aufgabenstellung:
Kreuzen Sie die für f zutreffende(n) Aussage(n) an!
- Aussage 1: f kann lokale Extremstellen besitzen.
- Aussage 2: \(f\left( {x + 1} \right) = f\left( x \right) + k\)
- Aussage 3: f besitzt immer genau eine Nullstelle.
- Aussage 4: \(\dfrac{{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)}}{{{x_2} - {x_1}}} = k{\text{ mit }}{x_1} \ne {x_2}\)
- Aussage 5: Die Krümmung des Graphen der Funktion f ist null.
Aufgabe 1362
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graph einer quadratischen Funktion
Gegeben ist der Graph einer Funktion g mit
\(g\left( x \right) = a \cdot {x^2} + b{\text{ mit }}a,b \in {\Bbb Z}{\text{ und a}} \ne {\text{0}}\)
Aufgabenstellung:
Geben Sie die Parameter a und b so an, dass sie zum abgebildeten Graphen von g passen!