Österreichische AHS Matura - 2021.01.12 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1806
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Dreieck verschieben
In der nachstehenden Abbildung sind ein Dreieck mit den Eckpunkten A, B und C sowie der Punkt A1 dargestellt. Die gekennzeichneten Punkte haben ganzzahlige Koordinaten.
Das Dreieck soll so um den Vektor \(\overrightarrow {A{A_1}} \) verschoben werden, dass die Punkte A, B und C in die Punkte A1, B1 und C1 übergehen.
Aufgabenstellung [0 / 0,5 / 1 P.] – Bearbeitungszeit < 5 Minuten
Ermitteln Sie die Koordinaten des Punktes C1.
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1807
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lösung einer Gleichung
Nachstehend ist eine Gleichung in \(x \in {\Bbb R}\) gegeben.
\(\sqrt {2 \cdot x - 6} = a{\text{ mit }}a \in {{\Bbb R}_0}^ + \)
- Aussage 1: \(( - \infty ;\left. { - 3} \right]\)
- Aussage 2: \(\left[ 3 \right.;\left. \infty \right)\)
- Aussage 3: \(\left[ { - 3} \right.;\left. 0 \right)\)
- Aussage 4: \(\left[ 0 \right.;\left. 3 \right)\)
- Aussage 5: \(\left[ { - 6;\left. { - 3} \right)} \right.\)
- Aussage 6: \(\left[ 3 \right.;\left. 6 \right]\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie dasjenige Intervall an, das für alle Werte von \(a \in {{\Bbb R}_0}^+ \) die Lösung der gegebenen Gleichung enthält.
Aufgabe 1808
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Radfahrer
Die Schule von Alexander und die Schule von Bernhard sind durch eine 13 km lange geradlinige Straße verbunden.
An einem bestimmten Tag fahren beide von ihrer jeweiligen Schule aus mit dem Fahrrad entlang dieser Straße einander entgegen. Sie starten zu unterschiedlichen Zeitpunkten und begegnen einander t Stunden nach der Abfahrt von Alexander.
Bis zu ihrer Begegnung gilt:
- Alexander fährt mit einer durchschnittlichen Geschwindigkeit von 18 km/h.
- Bernhard fährt mit einer durchschnittlichen Geschwindigkeit von 24 km/h.
Im gegebenen Kontext wird die nachstehende Gleichung aufgestellt und gelöst.
\(\eqalign{ & 18 \cdot t + 24 \cdot \left( {t - \dfrac{1}{3}} \right) = 13 \cr & t = \dfrac{1}{2} \cr} \)
- Aussage 1: Alexander fährt um 10 Minuten später ab als Bernhard.
- Aussage 2: Alexander ist bis zur Begegnung mit Bernhard 30 Minuten unterwegs.
- Aussage 3: Bernhard ist bis zur Begegnung mit Alexander 20 Minuten unterwegs.
- Aussage 4: Alexander legt bis zur Begegnung mit Bernhard 9 km zurück.
- Aussage 5: Bei ihrer Begegnung sind die beiden von Bernhards Schule weiter entfernt als von Alexanders Schule.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die beiden Aussagen an, die im gegebenen Kontext unter Beachtung der obigen Gleichung und deren Lösung zutreffend sind.
Aufgabe 1809
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Für \(a \in {\Bbb R}\backslash \left\{ 0 \right\}\) ist die quadratische Gleichung \({\left( {a \cdot x + 7} \right)^2}{\text{ = 25 in }}x \in {\Bbb R}\) gegeben.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Geben Sie alle \(a \in {\Bbb R}\backslash \left\{ 0 \right\}\) an, für die \(x = - 4\) eine Lösung der gegebenen quadratischen Gleichung ist.
Aufgabe 1810
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parameterdarstellung
Gegeben ist eine Gerade g mit der Parameterdarstellung
\(g:X = A + t \cdot \overrightarrow {AB} {\text{ mit }}t \in {\Bbb R}\)
Aufgabenstellung:
Bestimmen Sie t so, dass X = B gilt.
[0 / 1 Punkt]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1811
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Leiter
Eine Leiter lehnt an einer senkrechten Mauer. Die Leiter liegt in 6 m Hohe an der Mauer an und schließt mit der Mauer einen Winkel von 20° ein. Dieser Sachverhalt wird durch die nebenstehende (nicht maßstabgetreue) Abbildung veranschaulicht.
Aufgabenstellung:
Berechnen Sie die Länge der Leiter.
[0 / 1 Punkt]
Aufgabe 1812
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Geografische Breite
Die Erde hat annähernd die Gestalt einer Kugel mit dem Radius 6 370 km. In der unten stehenden Abbildung ist auf der Nordhalbkugel ein Breitenkreis visualisiert. Auf der Nordhalbkugel wird die geografische Breite φ vom Äquator nach Norden gemessen, wobei 0° ≤ φ ≤ 90° gilt.
Für den Radius r (in km) eines Breitenkreises (zur geografischen Breite φ) gilt: \(r = 6370 \cdot \cos \left( \varphi \right)\)
Aufgabenstellung
Geben Sie das kleinstmögliche Intervall W an, das alle Werte von r enthalt.
W = [ ; ]
[0 / 1 Punkt]
Aufgabe 1813
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften von Funktionen
Gegeben sind vier Funktionsgleichungen der reellen Funktionen f1 bis f4 mit \(a,b \in {{\Bbb R}^ + }{\text{ und }}b < 1\) und sechs Listen mit Eigenschaften von Funktionen.
- Liste A:
- kein Monotoniewechsel
- konstante Steigung
- kein Krümmungswechsel
- Liste B:
- genau eine lokale Extremstelle x0
- symmetrisch zur Geraden x = x0
- maximal zwei Nullstellen
- Liste C:
- unendlich viele lokale Extremstellen
- unendlich viele Wendestellen
- keine Asymptote
- Liste D:
- nur für x ∈ [0; ∞) definierbar
- überall rechtsgekrümmt (negativ gekrümmt)
- keine lokalen Extrem- oder Wendestellen
- Liste E:
- keine lokale Extremstelle
- genau eine Nullstelle
- genau eine Wendestelle
- Liste F:
- kein Monotoniewechsel
- die x-Achse ist Asymptote
- kein Krümmungswechsel
Aufgabenstellung:
Ordnen Sie den vier Funktionsgleichungen jeweils die zugehörige Liste (aus A bis F) zu.
- Funktionsgleichung 1: \({f_1}\left( x \right) = a \cdot {b^x}\)
- Funktionsgleichung 2: \({f_2}\left( x \right) = a \cdot x + b\)
- Funktionsgleichung 3: \({f_3}\left( x \right) = a \cdot \sin \left( {b \cdot x} \right)\)
- Funktionsgleichung 4: \({f_4}\left( x \right) = a \cdot {x^3} + b\)
[0 / ½ / 1 Punkt]
Aufgabe 1814
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Verlauf des Graphen einer linearen Funktion
Gegeben ist eine lineare Funktion f mit \(f\left( x \right) = k \cdot x + d{\text{ mit }}k,d \in {\Bbb R}{\text{ und }}d \ne 0\). Die Ebene wird von den beiden Koordinatenachsen in vier Quadranten unterteilt (siehe nachstehende Skizze).
Für den Graphen von f gilt:
- Er verläuft nicht durch den 1. Quadranten.
- Er verläuft durch den 2., 3. und 4. Quadranten.
Dafür müssen bestimmte Bedingungen für k und d gelten.
Aufgabenstellung:
Kreuzen Sie die Aussage mit den entsprechenden Bedingungen an.
- Aussage 1: \(k < 0{\text{ und }}d < 0\)
- Aussage 2: \(k < 0{\text{ und }}d > 0\)
- Aussage 3: \(k > 0{\text{ und }}d < 0\)
- Aussage 4: \(k > 0{\text{ und }}d > 0\)
- Aussage 5: \(k = 0{\text{ und }}d < 0\)
- Aussage 6: \(k = 0{\text{ und }}d > 0\)
[0 / 1 Punkt]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1815
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynomfunktion
Zwischen dem Grad einer Polynomfunktion und der Anzahl der reellen Nullstellen, der lokalen Extremstellen und der Wendestellen besteht ein Zusammenhang.
Aufgabenstellung:
Ergänzen Sie die Textlücken im nachstehenden Satz durch Ankreuzen des jeweils zutreffenden Satzteils so, dass eine richtige Aussage entsteht.
Jede Polynomfunktion _____1_____ hat _____2_____ .
- Satzteil 1.1: 4. Grades
- Satzteil 1.2: 5. Grades
- Satzteil 1.3: 6. Grades
- Satzteil 2.1: mindestens zwei verschiedene lokale Extremstellen
- Satzteil 2.2: mindestens zwei verschiedene reelle Nullstellen
- Satzteil 2.3: mindestens eine Wendestelle
[0 / 1 Punkt]
Aufgabe 1816
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeit
Das radioaktive Isotop 137Cs (Cäsium) hat eine Halbwertszeit von etwa 30 Jahren. Die Funktion f gibt in Abhängigkeit von der Zeit t an, wie viel Prozent der Ausgangsmenge an 137Cs noch vorhanden sind (t in Jahren, f(t) in % der Ausgangsmenge). Die zum Zeitpunkt t = 0 vorhandene Menge an 137Cs wird als Ausgangsmenge bezeichnet.
Aufgabenstellung:
Zeichnen Sie im nachstehenden Koordinatensystem im Zeitintervall [0; 60] den Graphen von f ein.
[0 / 1 Punkt]
Aufgabe 1817
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winkelfunktion
Gegeben ist die Funktion \(f:{\Bbb R} \to {\Bbb R}{\text{ mit }}f\left( x \right) = 3 \cdot \cos \left( x \right)\) . Diese Funktion soll in der Form \(x \mapsto a \cdot \sin \left( {x + b} \right)\) dargestellt werden, mit \(\left( {a,b \in {\Bbb R}} \right)\).
Aufgabenstellung:
Geben Sie für a und b jeweils einen passenden Wert an.
- a=
- b=
[0 / ½ / 1 Punkt]