Österreichische BHS Matura - 2022.05.03 - HTL2
Aufgabe 5636
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 03. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Werkzeuge – Aufgabe B_531
Teil a
Ein Werkzeugset besteht aus 6 verschieden langen Innensechskantschlüsseln (siehe nachstehendes Symbolfoto).
Abbildung fehlt
Bildquelle: Scott Ehardt – own work, public domain, https://commons.wikimedia.org/wiki/File:Allen_keys.jpg [01.07.2020] (adaptiert).
Das Verhältnis der Länge eines Innensechskantschlüssels zur Länge des nächstgrößeren beträgt jeweils 10 zu 11.
1. Teilaufgabe - Bearbeitungszeit 05:40
Vervollständigen Sie die nachstehende Formel zur Berechnung der Länge l3 aus der Länge l2.
\(\eqalign{ & {l_3} = x \cdot {l_2} \cr & x = ? \cr} \)
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie die Länge l6 des längsten Innensechskantschlüssels, wenn der kürzeste die Länge l1 = 9 cm hat.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 5637
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 03. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Werkzeuge – Aufgabe B_531
Teil b
In der nachstehenden Abbildung ist ein Teil eines Sägeblatts vereinfacht dargestellt.
Abbildung fehlt
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Formel zur Berechnung der Länge s auf. Verwenden Sie dabei die Winkel ε und φ sowie die Länge b.
s =
[0 / 1 P.]
Für ein bestimmtes Sägeblatt gilt:
a = 23,7 mm, b = 10,4 mm, s = 18,8 mm
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den Winkel φ.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie die auf das obige Dreieck nicht zutreffende Aussage an.
[1 aus 5] [0 / 1 P.]
- Aussage 1: \(\dfrac{a}{b} = \dfrac{{\sin \left( \varphi \right)}}{{\sin \left( \varepsilon \right)}}\)
- Aussage 2: \(\cos \left( {\varphi - 90} \right) = \dfrac{h}{b}\)
- Aussage 3: \({s^2} = {a^2} + {b^2} - 2 \cdot a \cdot b \cdot \cos \left( {180^\circ - \varepsilon - \varphi } \right)\)
- Aussage 4: \(\dfrac{h}{{\sin \left( \varepsilon \right)}} = \dfrac{a}{{\sin \left( \varphi \right)}}\)
- Aussage 5: \(\dfrac{{s \cdot b \cdot \sin \left( \varphi \right)}}{2} = \dfrac{{h \cdot s}}{2}\)
Aufgabe 5638
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 03. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Werkzeuge – Aufgabe B_531
Teil c
Stahlnägel werden in Packungen abgefüllt. Die Masse der Packungen ist annähernd normalverteilt mit dem Erwartungswert μ = 1 000 g und der Standardabweichung σ = 6 g.
Im Zuge einer Qualitätskontrolle werden Stichproben zu jeweils n Packungen entnommen. In der nachstehenden Abbildung ist der Graph der Dichtefunktion der Verteilung der Stichprobenmittelwerte dargestellt.
Abbildung fehlt
- W1, W2 ... Wendepunkte der Dichtefunktion
1. Teilaufgabe - Bearbeitungszeit 05:40
Geben Sie die Anzahl n der Packungen an, aus denen diese Stichproben jeweils bestehen.
n = Packungen
[0 / 1 P.]
Bei einer anderen Sorte von Stahlnägeln ist die Masse der Packungen ebenfalls annähernd normalverteilt. Bei einer Stichprobe von 8 zufällig ausgewählten Packungen wurden die nachstehenden Werte (in g) gemessen.
500,8 | 499,4 | 500,2 | 501,6 | 502,5 | 500,5 | 499,8 | 501,4 |
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie den zweiseitigen 95-%-Vertrauensbereich für den Erwartungswert der Masse der Packungen dieser Sorte von Stahlnägeln.
[0 / 1 P.]
Aufgabe 5639
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 03. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Werkzeuge – Aufgabe B_531
Teil d
In einem Labor werden Bohrmaschinen eines bestimmten Modells einem Langzeittest unterzogen. Die Lebensdauer dieser Bohrmaschinen ist annähernd normalverteilt. In der nachstehenden Abbildung ist der Graph der zugehörigen Verteilungsfunktion F dargestellt.
Abbildung fehlt
Die zugehörige Dichtefunktion wird mit f bezeichnet.
1. Teilaufgabe - Bearbeitungszeit 05:40
Veranschaulichen Sie in der obigen Abbildung die Wahrscheinlichkeit
\(\int\limits_{ - \infty }^n {f\left( x \right)} \,\,dx\)
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Beschreiben Sie ein Ereignis E im gegebenen Sachzusammenhang, für dessen Wahrscheinlichkeit gilt:
P(E) = 1 – F(n)
[0 / 1 P.]
Aufgabe 5647
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 03. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sedimente – Aufgabe B_543
Sedimente sind in Flüssigkeiten enthaltene Teilchen, die sich unter dem Einfluss der Schwerkraft ablagern.
Teil a
In einer Flüssigkeit sinkt ein Teilchen durch die Schwerkraft ab. Die Sinkgeschwindigkeit v kann modellhaft durch die nachstehende Differenzialgleichung beschrieben werden.
\(\dfrac{{dv}}{{dt}} = 10 - 20 \cdot v\)
- t ... Zeit in s
- v ... Sinkgeschwindigkeit in m/s
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie mithilfe der obigen Differenzialgleichung diejenige Sinkgeschwindigkeit, bei der die Beschleunigung null ist.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die allgemeine Lösung der Differenzialgleichung mithilfe der Methode Trennen der Variablen.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Lösung der Differenzialgleichung mit v(0) = 0,2.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 5648
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 03. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sedimente – Aufgabe B_543
Sedimente sind in Flüssigkeiten enthaltene Teilchen, die sich unter dem Einfluss der Schwerkraft ablagern.
Teil b
Das Flussbett der Donau verändert sich ständig. Die Seehöhe (Höhe über dem Meeresspiegel) an einer bestimmten Stelle des Flussbetts wurde wiederholt gemessen. Die Messwerte sind in der nachstehenden Tabelle dargestellt.
Zeit seit Beginn des Jahres 1950 in Jahren |
Seehöhe des Flussbetts in m |
0 | 142,0 |
20 | 141,7 |
35 | 141,6 |
45 | 141,2 |
52 | 141,0 |
Die Seehöhe des Flussbetts soll in Abhängigkeit von der Zeit durch die quadratische Funktion f beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe der Regressionsrechnung eine Gleichung der quadratischen Funktion f auf.
- t ... Zeit seit Beginn des Jahres 1950 in Jahren
- f(t) ... Seehöhe des Flussbetts zur Zeit t in m
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie mithilfe der quadratischen Funktion f die Seehöhe des Flussbetts zu Beginn des Jahres 2010.
[0 / 1 P.]
Aufgabe 5649
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 03. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sedimente – Aufgabe B_543
Sedimente sind in Flüssigkeiten enthaltene Teilchen, die sich unter dem Einfluss der Schwerkraft ablagern.
Teil c
Die Sinkgeschwindigkeit WS von kugelförmigen Sandkörnern in Wasser hängt von deren Durchmesser d ab (siehe nachstehende Abbildung).
Abbildung fehlt
Bildquelle: https://commons.wikimedia.org/wiki/File:Settling_velocity_quartz.png [15.03.2019] (adaptiert).
Die Dichte ϱ eines Sandkorns beträgt 2 650 kg/m3. Die Masse m ist das Produkt aus Dichte ϱ und Volumen V, also m = ϱ ・ V. Ein bestimmtes kugelförmiges Sandkorn hat eine Sinkgeschwindigkeit von 0,2 m/s.
1. Teilaufgabe - Bearbeitungszeit 11:20
Ermitteln Sie mithilfe der obigen Abbildung die Masse m dieses Sandkorns. Geben Sie das Ergebnis in der Einheit Gramm an.
[0 / 1 / 2 P.]
Im Bereich 0,01 mm < d < 0,1 mm ist der in der obigen Abbildung dargestellte Verlauf geradlinig. Daher kann die Sinkgeschwindigkeit WS in Abhängigkeit vom Durchmesser d in diesem Bereich durch eine der unten stehenden Funktionsgleichungen beschrieben werden.
2. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie die zutreffende Funktionsgleichung an.
[1 aus 5] [0 / 1 P.]
- a, c ... positive Konstanten
- Funktionsgleichung 1: \({W_S}\left( d \right) = a \cdot {c^d}\)
- Funktionsgleichung 2: \({W_S}\left( d \right) = \dfrac{a}{d}\)
- Funktionsgleichung 3: \({W_S}\left( d \right) = a \cdot {d^c}\)
- Funktionsgleichung 4: \({W_S}\left( d \right) = a \cdot d + c\)
- Funktionsgleichung 5: \({W_S}\left( d \right) = a \cdot \ln \left( d \right) + c\)
Aufgabe 5650
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 03. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Landung eines Flugzeugs – Aufgabe B_544
Teil a
Ein Flugzeug steuert beim Landeanflug den Punkt P = (13 200 | 23 100 | 0) an. Die Flugbahn des Flugzeugs wird näherungsweise durch die Gerade g mit dem Parameter λ beschrieben. (Alle Angaben in Metern.)
\(g:X = \left( {\begin{array}{*{20}{c}} 0\\ 0\\ {1500} \end{array}} \right) + \lambda \cdot \overrightarrow b \)
Die nachstehende Abbildung zeigt schematisch den Verlauf dieses Landeanflugs.
Abbildung fehlt
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie einen Richtungsvektor b.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den spitzen Winkel γ.
[0 / 1 P.]
Aufgabe 5651
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 03. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Landung eines Flugzeugs – Aufgabe B_544
Teil b
Die (negative) Beschleunigung eines Flugzeugs vom Aufsetzen (t = 0) bis zum Stillstand tS kann modellhaft durch eine lineare Funktion a beschrieben werden (siehe unten stehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 05:40
Zeichnen Sie in der nachstehenden Abbildung den linearen Mittelwert \(\overline a \) (Integralmittelwert) der Funktion a im Zeitintervall [0; tS] ein.
[0 / 1 P.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 5652
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 03. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Landung eines Flugzeugs – Aufgabe B_544
Teil c
Beim Starten und Landen eines Flugzeugs ist der sogenannte Rollwiderstandskoeffizient von Bedeutung. Der Rollwiderstandskoeffizient hängt unter anderem von der Geschwindigkeit ab. Diese wird in der Einheit Knoten angegeben. Mithilfe von Messwerten wurde die nachstehende lineare Regressionsfunktion c ermittelt.
\(c\left( v \right) = 0,00023 \cdot v + 0,01177\)
- v ... Geschwindigkeit in Knoten
- c(v) ... Rollwiderstandskoeffizient bei der Geschwindigkeit v
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie, um wie viel Prozent der Rollwiderstandskoeffizient gemäß diesem Modell bei einer Geschwindigkeit von 60 Knoten größer als bei einer Geschwindigkeit von 30 Knoten ist.
[0 / 1 P.]
Für den Messwert \(M = \left( {40\left| {{y_M}} \right.} \right)\) gilt:
\(c\left( {40} \right) - {y_M} = - 0,004\)
2. Teilaufgabe - Bearbeitungszeit 05:40
Zeichnen Sie in der nachstehenden Abbildung den Punkt M ein.
[0 / 1 P.]
Abbildung fehlt
Aufgabe 5653
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 03. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Landung eines Flugzeugs – Aufgabe B_544
Teil d
Flugzeuge fliegen in unterschiedlichen Höhen. Der Zusammenhang zwischen der Lufttemperatur T und der Flughöhe ist im nachstehenden Diagramm dargestellt.
Abbildung fehlt
Die Turbinen eines Flugzeugs wandeln einen Teil der Energie des Treibstoffs in Bewegungsenergie um. Dieser Anteil kann modellhaft durch den Carnot-Wirkungsgrad η beschrieben werden. Für einen bestimmten Turbinentyp gilt:
\(\eta = \dfrac{{1230 - T}}{{1230}}\)
- T ... Lufttemperatur in Kelvin
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie mithilfe des obigen Diagramms den Carnot-Wirkungsgrad in einer Flughöhe von 9 km.
[0 / 1 P.]