Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Formeln und Abhängigkeiten

Formeln und Abhängigkeiten

Zum Schlagwort passende, original Teil A und Teil B Aufgaben, aus ehemaligen BHS bzw. BRP Maturaterminen, aus dem Fach Angewandte Mathematik.

Hier findest du folgende Inhalte

23
Aufgaben
    Aufgaben
    LösungswegBeat the Clock

    Aufgabe 4027

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2017 - Teil-B-Aufgaben
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Prismen und Linsen - Aufgabe B_411

    Teil c
    Bei der Abbildung eines Gegenstands mithilfe einer Sammellinse gelten folgende Beziehungen:

    \(\dfrac{B}{G} = \dfrac{b}{g}{\text{ und }}b = \dfrac{{g \cdot f}}{{g - f}}\)

    mit

    B Höhe des Bildes
    G Höhe des Gegenstands
    b Abstand des Bildes von der Linse
    g Abstand des Gegenstands von der Linse
    f Brennweite der Linse

    1. Teilaufgabe - Bearbeitungszeit 5:40
    Kreuzen Sie die zutreffende Aussage an.
    [1 aus 5] [1 Punkt]

    • Aussage 1: Wenn g = 3 · f gilt, dann ist B größer als G.
    • Aussage 2: Wenn g = 3 · f gilt, dann ist B = G.
    • Aussage 3: Wenn g = 2 · f gilt, dann ist B kleiner als G.
    • Aussage 4: Wenn g = 2 · f gilt, dann ist B = G.
    • Aussage 5: Wenn g = 2 · f gilt, dann ist B größer als G.
    Prismen und Linsen - Aufgabe B_411
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HTL1
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HTL2
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster BAfEP, BASOP, BRP
    Substitutionsverfahren für lineare Gleichungssysteme
    Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
    Formeln und Abhängigkeiten
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.6
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung in Ruhe entspannen

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Medidation 1050x450
    Startseite
    Lösungsweg

    Aufgabe 4130

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 20. September 2018 - Teil-A Aufgabe
    Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Kugelstoßen

    Teil d

    Kugelstoßen ist eine Disziplin bei den Olympischen Sommerspielen. Eine Metallkugel muss so weit wie möglich aus einem Kreis in einen vorgegebenen Aufschlagbereich gestoßen werden. Für die bei den Männern verwendeten Kugeln gelten folgende Vorgaben:

    • Die Masse beträgt 7 257 g.
    • Der Durchmesser der Kugel liegt zwischen 11 cm und 13 cm.

    Eine Messing-Eisen-Legierung hat eine Dichte von 8,2 g/cm³.
    Die Masse m ist das Produkt aus Volumen V und Dichte ϱ, also m = V ∙ ϱ .


    1. Teilaufgabe - Bearbeitungszeit 5:40
    Überprüfen Sie nachweislich, ob man aus dieser Messing-Eisen-Legierung eine Kugel herstellen kann, die diese Vorgaben erfüllt.
    [1 Punkt]

    Kugelstoßen - Aufgabe A_268
    Volumen Zylinder
    Geometrie
    Formeln und Abhängigkeiten
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.5
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.6
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4212

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Kochzeit von Eiern - Aufgabe A_289

    Teil a

    Der Physiker Werner Gruber hat mit Hühnereiern experimentiert. Er hat festgestellt, dass die Kochzeit von Eiern unter anderem abhängt von:

    • dem Durchmesser d des Eies (siehe nebenstehende Abbildung)
    • der Lagertemperatur x vor dem Kochen

    Ellipse c Ellipse c: Ellipse mit Brennpunkten A, B durch C Ellipse c Ellipse c: Ellipse mit Brennpunkten A, B durch C Vektor u Vektor u: Vektor(D, E) Vektor u Vektor u: Vektor(D, E) Vektor v Vektor v: Vektor(E, D) Vektor v Vektor v: Vektor(E, D) d Text1 = “d”

    Datenquelle: Gruber, Werner: Die Genussformel. Kulinarische Physik. Salzburg: Ecowin 2008, S. 79 – 84.

    Ein Ei soll weich gekocht werden. Die Kochzeit kann in Abhängigkeit vom Durchmesser d unter bestimmten Bedingungen näherungsweise durch die quadratische Funktion W beschrieben werden:

    \(W\left( d \right) = a \cdot {d^2}\)

    d Durchmesser des Eies in mm
    W(d) Kochzeit bei einem Durchmesser d in min
    a positiver Parameter

     

    Bei einem Durchmesser von 45 mm ergibt sich eine Kochzeit von 5 min.

    1. Teilaufgabe - Bearbeitungszeit 5:40
    Ermitteln Sie den Parameter a.
    [1 Punkt]


    Zwei Eier mit unterschiedlichen Durchmessern werden weich gekocht. Der Durchmesser von Ei B ist um 10 % größer als der Durchmesser von Ei A.

    2. Teilaufgabe - Bearbeitungszeit 5:40
    Zeigen Sie, dass die Kochzeit von Ei B um mehr als 10 % länger ist als die Kochzeit von Ei A.
    [1 Punkt]

    Kochzeit von Eiern - Aufgabe A_289
    Quadratische Gleichung mit einer Variablen
    Substitutionsverfahren für lineare Gleichungssysteme
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2020 - kostenlos vorgerechnet
    Quadratische Funktion
    Funktionale Zusammenhänge
    Formeln und Abhängigkeiten
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 3.9
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.6
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4195

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Wandern - Aufgabe A_089

    Teil a

    Um die Gehzeit für eine Wanderung zu ermitteln, kann die folgende Faustregel angewendet werden: „Die Höhendifferenz in Metern dividiert man durch 400, die Horizontalentfernung in Kilometern dividiert man durch 4. Addiert man diese beiden Ergebnisse, so erhält man die Gehzeit in Stunden.“


    1. Teilaufgabe - Bearbeitungszeit 5:40
    Übertragen Sie diese Faustregel in eine Formel für die Gehzeit t.
    [1 Punkt]

    Verwenden Sie dabei die folgenden Bezeichnungen:

    • h ... Höhendifferenz in m
    • x ... Horizontalentfernung in km
    • t ... Gehzeit in h
    • t = gesucht

    Jemand legt bei einer Wanderung eine Horizontalentfernung von 6,7 km zurück und benötigt dafür eine Gehzeit von 3 h 15 min.

    2. Teilaufgabe - Bearbeitungszeit 5:40
    Berechnen Sie die dabei überwundene Höhendifferenz mithilfe der angegebenen Faustregel.
    [1 Punkt]

    Wandern - Aufgabe A_089
    Lineares Gleichungssystem mit 2 Variablen
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Jänner 2020 - kostenlos vorgerechnet
    Zahlen und Maße
    Formeln und Abhängigkeiten
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.6
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 1.3
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4093

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Abrissbirnen - Aufgabe B_012

    Abrissbirnen sind kugel- oder birnenförmige Werkzeuge zum Abreisen von Gebäuden.

    Teil a

    Eine Abrissbirne hat die Form einer Kugel mit dem Durchmesser d. Die Masse m und die Dichte ϱ der Kugel sind bekannt. Die Masse ist das Produkt von Volumen und Dichte.

    1. Teilaufgabe - Bearbeitungszeit 5:40

    Erstellen Sie eine Formel zur Berechnung des Durchmessers d aus m und ϱ .
    d= ……   
    [1 Punkt]


    Eine einfache Regel besagt: „Um die Masse einer Kugel zu verdoppeln, ist ihr Durchmesser um rund ein Viertel zu vergrößern.“

    2. Teilaufgabe - Bearbeitungszeit 5:40

    Zeigen Sie allgemein, dass diese Regel richtig ist.
    [1 Punkt]

    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster BAfEP, BASOP, BRP
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HTL1
    Mathematik Zentralmatura BHS - Mai 2018 - kostenlos vorgerechnet
    Abrissbirnen - Aufgabe B_012
    Volumen Kugel
    Geometrie
    Formeln und Abhängigkeiten
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.6
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.5
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung in Ruhe entspannen

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Medidation 1050x450
    Startseite
    Lösungsweg

    Aufgabe 4159

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Die Adria-Wien-Pipeline - Aufgabe A_280

    Österreich muss einen Großteil seines Erdölbedarfs durch Importe von Rohöl decken. Diese Importe werden vorwiegend über die Adria-Wien-Pipeline durchgeführt, die von Triest nach Wien-Schwechat führt.

    Teil b

    Modellhaft betrachtet ist die Pipeline ein Drehzylinder mit dem Durchmesser d und der Höhe l. Der Innendurchmesser der Pipeline betragt d = 457,2 mm. Die Lange der Pipeline betragt rund l = 416 km. In der Erdölindustrie wird für das Volumen von Rohöl häufig die Einheit Barrel verwendet. Es gilt: 1 Barrel ≈ 0,159 m3

     

    1. Teilaufgabe - Bearbeitungszeit 11:20

    Berechnen Sie, wie viele Barrel Rohöl die vollständig befüllte Pipeline fasst.

    [2 Punkte]

    Die Adria-Wien-Pipeline - Aufgabe A_280
    Volumen Zylinder
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2019 - kostenlos vorgerechnet
    Zahlen und Maße
    Formeln und Abhängigkeiten
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 1.3
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.6
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4167

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Bahnverkehr in Österreich - Aufgabe A_283

    Teil a

    Eine Bahnfahrt von Wien nach Graz dauert 2 Stunden und 35 Minuten. Die mittlere Reisegeschwindigkeit beträgt dabei rund 81,83 km/h. Im Jahr 2026 soll der Semmering-Basistunnel fertiggestellt werden. Dadurch wird sich die Fahrtstrecke um 13,7 Kilometer und die Fahrtdauer um 50 Minuten verkürzen.

    1. Teilaufgabe - Bearbeitungszeit 11:20

    Berechnen Sie die mittlere Reisegeschwindigkeit zwischen Wien und Graz für die verkürzte Fahrt.
    [2 Punkte]

    Bahnverkehr in Österreich - Aufgabe A_283
    Geschwindigkeit-Zeit-Funktion
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2019 - kostenlos vorgerechnet
    Formeln und Abhängigkeiten
    Zahlen und Maße
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.6
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 1.3
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4176

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Der Pauliberg - Aufgabe A_067

    Der Pauliberg ist Österreichs jüngster erloschener Vulkan und ein beliebtes Ausflugsziel im Burgenland.

    Teil a

    Beim Pauliberg befindet sich eine Fundstätte von großen Brocken aus vulkanischem Gestein. Für die nachfolgenden Aufgaben wird vereinfacht von kugelförmigen Brocken ausgegangen. Ein bestimmter Brocken hat eine Masse von 4,5 t. Die Dichte des Gesteins beträgt 3 000 kg/m3. Die Masse m ist das Produkt aus Volumen V und Dichte \(\rho\) also: \(m = V \cdot \rho \)

    1. Teilaufgabe - Bearbeitungszeit 5:40

    Berechnen Sie den Durchmesser dieses Brockens.
    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40

    Von zwei solchen Brocken mit gleicher Dichte und verschiedener Masse kennt man jeweils den Durchmesser:

      Brocken 1 Brocken 2
    Masse in kg m1 m2
    Durchmesser 1 m 1 dm

     

    Kreuzen Sie die zutreffende Aussage an.

    • Aussage 1: m1 ist das Zehnfache von m2.
    • Aussage 2: m1 und m2 stehen im Verhältnis 10 000 : 1.
    • Aussage 3: \({m_2} = 1000 \cdot \pi \cdot {m_1}\)
    • Aussage 4: m1 und m2 stehen im Verhältnis 100 : 1.
    • Aussage 5: \({m_1} = 1000 \cdot {m_2}\)

    [1 aus 5] [1 Punkt]

    Der Pauliberg - Aufgabe A_067
    Volumen Kugel
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - September 2019 - kostenlos vorgerechnet
    Geometrie
    Formeln und Abhängigkeiten
    Zahlen und Maße
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.5
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.6
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 1.3
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4177

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Der Pauliberg - Aufgabe A_067

    Der Pauliberg ist Österreichs jüngster erloschener Vulkan und ein beliebtes Ausflugsziel im Burgenland.

    Teil b

    Beim Pauliberg gibt es einen beliebten Wanderweg. Sarah benötigt für die a Kilometer lange Wanderung b Stunden. Leonie wandert auf der gleichen Strecke, startet aber 1,5 Stunden später. Sarah und Leonie erreichen gleichzeitig das Ziel.

    1. Teilaufgabe - Bearbeitungszeit 5:40

    Erstellen Sie aus a und b eine Formel zur Berechnung der mittleren Geschwindigkeit v von Leonie in km/h.

    v =

     [1 Punkt]

    Der Pauliberg - Aufgabe A_067
    Geschwindigkeit-Zeit-Funktion
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - September 2019 - kostenlos vorgerechnet
    Formeln und Abhängigkeiten
    Bewegungsaufgaben
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.6
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung in Ruhe entspannen

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Medidation 1050x450
    Startseite
    Lösungsweg

    Aufgabe 4238

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Rund um die Heizung - Aufgabe A_140

    Teil a

    Die nachstehende Abbildung zeigt einen waagrecht gelagerten, zylinderförmigen Öltank in der Ansicht von vorne. Der Punkt M ist der Mittelpunkt des dargestellten Kreises mit dem Radius r .

    Bild
    beispiel_4238_1

    1. Teilaufgabe - Bearbeitungszeit 5:40

    Erstellen Sie mithilfe von r und α eine Formel zur Berechnung der Füllhöhe h.
    h =
    [1 Punkt]


    Für das Volumen V eines 2 m langen Öltanks gilt:
    \(V = {r^2} \cdot \pi \cdot 2\)

    2. Teilaufgabe - Bearbeitungszeit 5:40

    Berechnen Sie, um wie viel Prozent das Volumen größer wäre, wenn der Radius um 20 % größer wäre.

    [1 Punkt]

    Rund um die Heizung - Aufgabe A_140
    Prozentuelle Änderung
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - September 2020 - kostenlos vorgerechnet
    Formeln und Abhängigkeiten
    sin cos tan im rechtwinkeligen Dreieck
    Prozente und Promille
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 1.5
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.6
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.12
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4265

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 21. Mai 2021 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Zirkus - Aufgabe A_298

    Teil b

    Eine Gruppe von n Personen bestellt Eintrittskarten für einen anderen Zirkus zu einem Eintrittspreis von p Euro pro Person. Bis zum Tag der Vorstellung hat sich die Gruppengröße jedoch um k Personen erhöht, und der Veranstalter gewährt deshalb allen eine Ermäßigung von 5 % auf den Eintrittspreis.

     

    1. Teilaufgabe - Bearbeitungszeit 5:40

    Kreuzen Sie den richtigen Ausdruck zur Berechnung des insgesamt bezahlten Eintritts an.

    [1 aus 5]

    [0 / 1 P.]

     

    • Aussage 1: \(\dfrac{{\left( {n + k} \right) \cdot p}}{{0,95}}\)
    • Aussage 2: \(\left( {n + k} \right) \cdot p \cdot 0,95\)
    • Aussage 3: \(0,95 \cdot \left( {n + k \cdot p} \right)\)
    • Aussage 4: \(0,05 \cdot \left( {n + k} \right) \cdot p\)
    • Aussage 5: \(\left( {n \cdot k + p} \right) \cdot 0,95\)
    Zirkus - Aufgabe A_298
    Prozentrechnung
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2021 - kostenlos vorgerechnet
    Prozente und Promille
    Formeln und Abhängigkeiten
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 1.5
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.6
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4268

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 21. Mai 2021 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Bäume - Aufgabe A_299

    Teil b

    Für eine Modellrechnung werden folgende Annahmen getroffen: An einem bestimmten Sommertag scheint die Sonne 14,5 Stunden lang. Ein Blatt eines Laubbaums produziert bei Sonnenschein pro Stunde 2,14 mg Sauerstoff. Ein Laubbaum hat 30 000 Blätter.

    1. Teilaufgabe - Bearbeitungszeit 5:40

    Berechnen Sie die Sauerstoffmenge, die solch ein Laubbaum an diesem Sommertag produziert. Geben Sie das Ergebnis in Kilogramm an.

    [0 / 1 P.]


    Eine Person benötigt 0,816 kg Sauerstoff pro Tag. Man möchte wissen, wie viele solcher Laubbäume erforderlich sind, um den täglichen Sauerstoffbedarf von x Personen zu decken. Diese Anzahl an Laubbäumen wird mit n bezeichnet.

    2. Teilaufgabe - Bearbeitungszeit 5:40

    Stellen Sie mithilfe von x eine Formel zur Berechnung von n auf.

    n =

    [0 / 1 P.]

    Bäume - Aufgabe A_299
    Gleitkommadarstellung
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
    Mathematik Zentralmatura BHS - Mai 2021 - kostenlos vorgerechnet
    Zahlen und Maße
    Formeln und Abhängigkeiten
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 1.3
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.6
    Fragen oder Feedback

    Seitennummerierung

    • Aktuelle Seite 1
    • Page 2
    • Nächste Seite
    • Letzte Seite

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Smartphone
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH